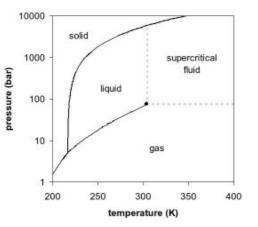


MODELLING TIME SERIES OF CARBON DIOXIDE EMISSIONES IN ROMA CITY

G. Emanuele Adamo Business Administration and Quantitative Methods Ph.D Carlos III University, Madrid

UC3M_____G. Emanuele Adamo 1


1. Introduction

The aim of the present work is to report and analyse time series of carbon dioxide emissions recorded in Roma city centre. In the first part of the paper the importance and the role of the carbon dioxide are explained; in the second part, using EVIEWS software, the series have been modelled taking into account the literature review, while at the end for generalizing the univariate AR models, the VAR model is used looking at interdependencies between multiple time series.

2. The Carbon dioxide

Carbon dioxide is a chemical compound, normally a colorless, odorless and neutral gas, and is composed of one carbon and two oxygen atoms, see

Figure 1. It is often referred to by its formula **CO**₂. Carbon dioxide is present in the Earth's

Figure 2: Carbon dioxide pressuretemperature phase diagram

nt in the Earth's atmosphere at a concentration of approximately 0.000383 by volume (383 ppm) and is an important

greenhouse gas due to its ability

Figure 1: chemical structure of carbon dioxide

to absorb many infrared wavelengths of sunlight, and due to the length of time it stays in the atmosphere. It is also a major component of the carbon cycle. In its solid state, carbon dioxide is called dry ice. CO_2 has no liquid state at normal atmospheric

pressure. Its density at standard temperature and pressure is around 1.98 kg/m³, about 1.53 times that of air. The carbon dioxide molecule (O=C=O) contains two double bonds and has a linear shape. It has no electrical dipole. As it is fully oxidized, it is not very reactive and is non-flammable and therefore is considered neutral.

Under normal atmospheric pressure (1 atm) at -78.5 °C, carbon dioxide changes directly from a solid phase to a gaseous phase through sublimation or gaseous to solid through deposition, see Figure 2. The solid form is typically called "dry ice". Liquid carbon dioxide forms only at pressures above 4.0-5.1 atm, depending on temperature. Specifically, the triple point is 416.7 kPa at - 56.6 °C The critical point is 7821 kPa at 31.1 °C.¹

2. Principle roles of CO₂

All aerobic organisms produce CO_2 when they oxidise carbohydrates, fatty acids and proteins in the mitochondria of cells; it is the prime energy source and the main metabolic pathway in heterotrophic organisms such as animals, and also a secondary energy source in prototroph organisms such as plants when not enough light is available for photosynthesis.

Biological role: Carbon dioxide is an end product in organisms that obtain energy from breaking down sugars, fats and amino acids with oxygen as part of their metabolism, in a process known as cellular respiration. This includes all plants, animals, many fungi and some bacteria. In higher animals, the carbon dioxide travels in the blood from the body's tissues to the lungs where it is exhaled. In plants using photosynthesis, carbon dioxide is absorbed from the atmosphere.

Role in photosynthesis: Plants remove carbon dioxide from the atmosphere by photosynthesis, also called carbon assimilation, which uses light energy to produce organic plant materials by combining carbon dioxide and water. Free oxygen is released as gas from the decomposition of water molecules, while the hydrogen is split into its protons and electrons and used to generate chemical energy via photophosphorylation. This energy is required for the fixation of carbon dioxide in the Calvin cycle to form sugars.

These sugars can then be used for growth within the plant through respiration. Carbon dioxide gas must be introduced into greenhouses to maintain plant growth, as even in vented greenhouses the concentration of carbon dioxide can fall during daylight hours to as low as 200 ppm, at which level photosynthesis is significantly reduced. Plants can potentially grow up to 50 percent faster in concentrations of 1000 ppm CO_2 when compared with ambient conditions.

Plants also emit CO_2 during respiration, so it is only during growth stages that plants are net absorbers. For example a growing forest will absorb many tonnes of CO_2 each year, however a mature forest will produce as much CO_2 from respiration and decomposition of dead specimens (e.g. fallen branches) as used in biosynthesis in growing plants. Regardless of this, mature forests are still valuable carbon sinks, helping maintain balance in the Earth's atmosphere.

The lowering of carbon dioxide in the atmosphere is largely due to absorption by plants, which convert it to sugars through photosynthesis.

Animal toxicity. Carbon dioxide content in fresh air varies and is between 0.03% (300 ppm - Parts Per Million; by volume) and 0.06% (600 ppm), depending on location. Exhaled breath is approximately 4.5% carbon dioxide. When inhaled in high concentrations (greater than 5% by volume, or 50000 ppm), it is immediately dangerous to the life and health of humans and other animals. The current threshold limit value (TLV) or maximum level that is considered safe for healthy adults for an 8-hour work day is 0.5% (5000 ppm). The maximum safe level for infants, children, the elderly and individuals with cardio-pulmonary health issues would be significantly less.

These figures are valid for carbon dioxide supplied in "pure" form. In indoor spaces occupied by humans the carbon dioxide concentration will also reach a level higher than in pure outdoor air. Concentrations higher than 1000 ppm will cause discomfort in more than 20% of occupants, and the discomfort will increase with increasing CO_2 concentration. The discomfort will be caused by various gases coming from human respiration and perspiration, and not by CO_2 itself. At 2000 ppm the majority of occupants will feel a significant degree of discomfort, and many will develop nausea and headache. The CO_2 concentration between 300 and 2500 ppm is used as an indicator of indoor air

quality in spaces polluted by human occupation. *Human physiology:* According to a study by the USDA,² an average person's respiration generates approximately 450 liters (roughly 900 grams) of carbon dioxide per day.

3. Carbon dioxide in the Earth's atmosphere and pollution

Despite the low concentration, CO_2 is a very important component of the Earth's atmosphere because it absorbs infrared radiation at wavelengths of 4.26 µm (asymmetric stretching vibration mode) and 14.99 µm (bending vibration mode) and enhances the greenhouse effect to a great degree.³ With a radioactive forcing of about 1.5 W/m², it is relatively twice as powerful as the next major forcing greenhouse gas, methane, and relatively ten times as powerful as the third, nitrous oxide. Carbon dioxide alone contributes up to 12% to the greenhouse effect.

At low concentrations, it induces fatigue in healthy people and chest pain in people with heart disease. At higher concentrations, it causes impaired vision and coordination, headaches, dizziness, confusion; nausea. It could cause flu-like symptoms that clear up after leaving home. It is fatal at very high concentrations. Acute effects are due to the formation of carboxyhemoglobin in the blood. At moderate concentrations it induces angina, impaired vision, and reduced brain function may result. As part of the current scientific opinion that excess amounts of carbon dioxide produced by humans in the atmosphere lead to global warming, various methods of limiting or removing the amount of carbon dioxide in the atmosphere have been suggested. Current debate on the subject mostly involves economic or political matters at a policy level.

4. The data collection

Carbon dioxide emissions is recorded daily, each hour, by many places (stations) in Roma city center, during 2002 year, (365 observations). The most common principles for CO sensors are infrared gas sensors (NDIR) and chemical gas sensors. In the following map (figure 3) the positioning of recording stations are shown. It is important to underline that they are placed in strategic points for tourist and citizen flows.

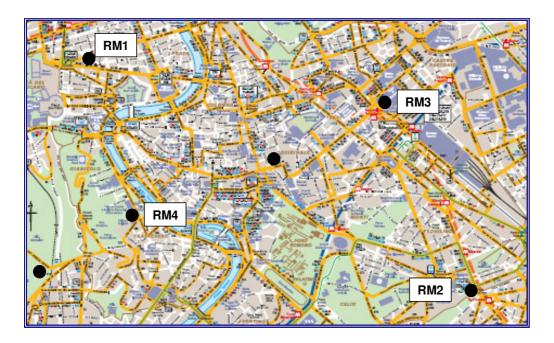
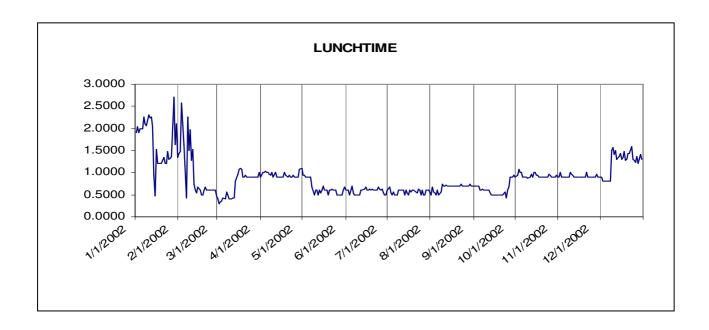
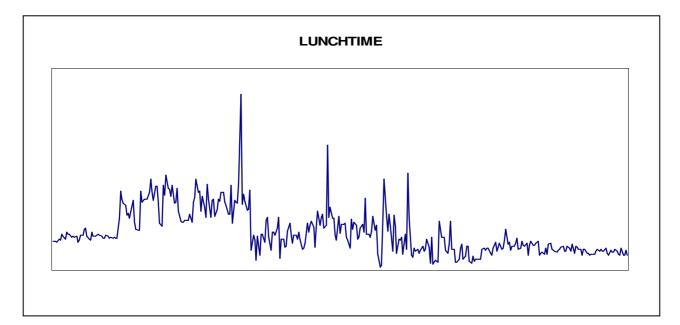


Figure 3: Recording stations positioning. (Source: our elaboration)

The place "RM3", for instance, is near the train station, "RM1" near the Vatican city, "RM4" is in the school district, while "RM2" is near one of the most important consular road: the Appia.


The data on which this paper is focused had been recorded in 2002. Since children are the most risk target, it has been decided to refer our study on the time in which children are more exposed to emissions and road traffic is higher, that is, the time "back to home from school" (lunch time, from 1 pm to 3 pm, figure 4). A study of more than 4,000 Dutch infants has concluded that young children who live close to busy roads are more at risk of developing respiratory diseases such as asthma For those children living close to busy roads, the study shows an average of 20% to 30% increased likelihood of asthma, wheezing, ear, nose and throat infections, colds and flu. (M.Jarret, 05).


The U.S. National Ambient Air Quality Standards for outdoor air are 9 ppm (40,000 micrograms per meter cubed) for 8 hours, and 35 ppm for 1 hour. (Source: NAAQS, 2004)

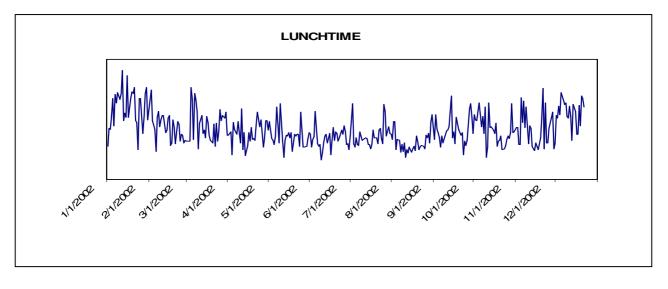

"Go to school" "lunch time"																										
🖾 Microsoft Excel - CO_02_matrix																										
													. 8 >													
i 🗅 📂 🕞		- 🙉 -		- 192	8	Σ-	01 I A			* E Ar	ial			- 10	- 1	N K	s		= =	-2-	-	€∣₫	E 10	1 - 8	- A	-
B2		,69999								- P														-		1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -
	A	в	C	D	E	F	G	H		- J •	-	L	M		•0	• •	Q	R	S	Т	U	\sim	W	X	Y	
1		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	. 16	17	18	19	20	21	22	23	24	
2	01-gen-02	0,7	1,1	1	0,9	0,9	0,9	1	1	0,9	9,9	0,9	0,9	1	1	1	0,9	0,9	1	1,1	1,2	1,3	1,3	1,33	1,2	
3	02-gen-02	1,2	1,2	1,1	0,9	0,9	0,9	0 ,9	1,3	2,1	2,4	2,1	1,7	1,5	1,5	1,4	1,4	1,7	1,8	1,7	1,9	2	1,7	1,5	1,73	
4	03-gen-02	1,1	0,9	0,9	0,8	0,8	0,8	0,9	1,1	1,4	1 ,5	1,3	1,2	1,2	1,2	1,1	•1,1	1,2	1,3	1,5	1,5	1,8	1,5	1,1	1	
5	04-gen-02	1,88	0,9	0,9	0,8	8,0	0,8	b ,8	1	1,2	1,2	1,3	1,5	1,4	1,3	1,4	1,4	1,5	1,8	2,1	2,4	2,6	1,9	1,4	1,4	
6	05-gen-02		1,98	0,9	1,3	1,2	1	0,9	1,1	1,5	1,7	1,6	1,6	•1,5	1,4	1,3	1,2	1,4	1,8	2,4	2,1	2,4	2,3	2,1	2,8	
7	06-gen-02	2,4		1,58	1,5	1,4	1,1	1,1	1,3	1,5	1,5	1,4	1,3	1,5	1,5	1,4	1,2	1,1	1,4	2,5	2,2	2,7	5	5,9	5,9	
8	07-gen-02	4,6	3,9	-	1,48	1,8	1,6	6, 1	2,9	7	8,8	5,3	З	2	1,6	1,6	1,5	1,7	3,8	6,3	6,5	6,5	6,7	5,6	5	
9	08-gen-02	4,2	3,2	2,2		1,48	1,3	6, 1	3,5	7,8	9,6	6,6	3,3	•2,3	2,1	2	1,8	1,9	3,4	5	5,7	4,9	3,9	2,4	2,6	
10	09-gen-02	3,2	2,1	1,6	1,5		1,52	2		7,6	8,8	5,3	3	1,9	1,8	1,8	1,8	1,8	З	4,7	5,9	5,9	5,2	5	4,7	
11	10-gen-02	4,2	3,5	2,8	2,1	1,6	1,4	2		6,3	, 9	5,2	3,2	2,3	2	1,6	1,6	2	3,3	4,9	5,7	6,9	6,7	5,7	5,3	
12	11-gen-02	4,6	3,5	2,6	2	1,6	1,5	2,1	2,62	7,1	9,5	6,8	4,1	2,7	2,1	1,9	1,7	2	2,7	3,9	5,2	6	5,8	5,4	5,4	
13	12-gen-02	5,3	4,4	3,4	2,5	2,2	2,2	2,1	3,2		7,4	5,4	3,2	2,2	1,9	1,7	1,4	1,5	2,5	4.1	6,2	6,7	6	5	4,4	
14	13-gen-02	3,6	3,3	4,5	4,4	3,5	2,9	2,6	2,5	2,9	6,2	2,9	2,2	1,8	1,6		1,2	1,2	2		4,15		4,05		3,4	
15	14-gen-02		2,66			1,73		-				3,58	4,1		2,3	2	1 ,9	1,8	1,9	2	1,9	1,6	1,4	1,1	1	
16	15-gen-02		1,47	8,0	0,8	0,9	0,9	1	1,7	4,6	3,7	2,3	1,9	1,7	1,8	2	1,9	2	2,5	3	3,3	3,1	2,8	2,8	3,1	
17	16-gen-02 17-gen-02	2,6	2,3		1,6	1,3	1,2	1,3		2,5	2,5	2,2	2,1	2,3	2,1	2,1	1,8	2,2	2,5	2,8	2,6	2,1	1,6	1,2	1,2	
18	18-gen-02	1,1	1	0,9	1,97	0,9	0,9	1,2	1,6	2,3	2,2	1,9 2,9	1,6	1,6	1,8	1,9	■1,7 ■1,7	1,9	2,3	2,8	2,7	2,4	2	1,8	1,6	
20	19-gen-02	1,3	1,1	1,5			1,48	1.7	1,5	3,7	1,2	3.7	2,3	1,9	1,9 1,9	1,7	1,7	1,9	2,1	2,5 3,3	3,7	3,6 4,9	2,4	2	1,9	
20	20-gen-02	1,7	4,2	4,2	1,6 3,3	2,8	2,8	1.48		4,8	2,4	2,3	2,3	1,9		1,6	1,4	1,4	2,1	3,3	4,3	4,9	5,3 5,3	5,3 5,3	4,6	
22	20-gen-02 21-gen-02	4,4	4,2	2,4	2,1	2,8	2,8	1.7	2,07	2,1	Z,4	2,3	3.4	2,8	1,5 2,9		2,2	2,3	2,1	3,5	4,5	4,8	3,3	5,3	3.3	
23	21-gen-02 22-gen-02	3.1	2,7	2,4	1.9	1,5	1,5	1.6	2,07		6,2	4,7		• 2,0 • 1,9	2,9	2,6	1.8	2,3	2,9	3,0	3,9	3,5	2,6	1,8	1,4	
23	23-gen-02	1,6	1,7	1.4	1,3	1,3	1,2	1,5	2,3			2,4	2,7	1,5	1,3	1,2	1,3	1,4	1,7	1,7	2	2,1	1,7	1,7	1,4	
25	24-gen-02	1,4	1,2	1,1	0,9	0,8	0,8	0,9	1,2	1,4		3,38	0,9	0,9	1,0	1,2	1,5	0,9	1.7	1	1,5	2,4	2,4	1,8	1,0	
26	25-gen-02	1,1	1.1	1,1	1.1	0,0	0,9	1.1	1,2	2,6	2.6	2.4	2		1,4	1,3	1,3	1.4	1.6	2	2	2,4	2.5	2,9	2,1	
27	NA1 NA4 NA5	17	16	17	1.8	17	17	Ë	29	43	2,5 A 5	2,4	22	Ten I	15	1 4	13	1 4	1.7	21	20	4.7	4.0		2,1	>
			0	<u>-</u>	1 3	8	8 B	• • <u>-</u> 4	<u>s - 1</u>	<u> </u>		= •			•).											
Listo		Circular												-												

Figure 4: the database

By taking the mean of the three observations in the period "lunch time" four times series have been obtained, as shown in the following picture 5. (RM1, RM2, RM3, RM4). They show different trends, with some outliers and no stationarity.

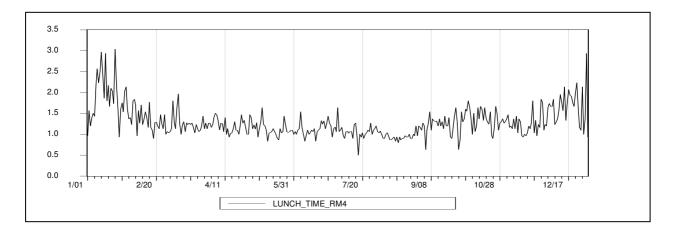
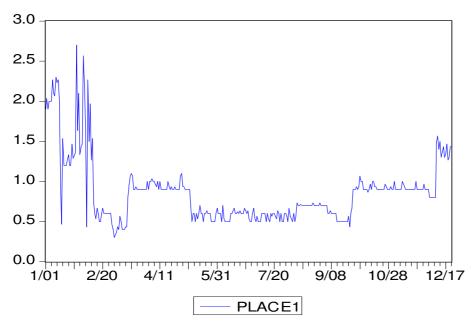



Figure 5: the original times series of carbon dioxide emissions:RM1, RM5, RM4, RM7, respectively. (Source: our elaboration)

5. Modelling time series

In this part of the paper we choose a model for each of the four series (Place_1, Place_2, Place_3, Place_4). In the last part, the VAR model **(Vector autoregression)** to capture the evolution and the interdependencies between multiple time series is chosen.

Place 1 (ROMA_1)

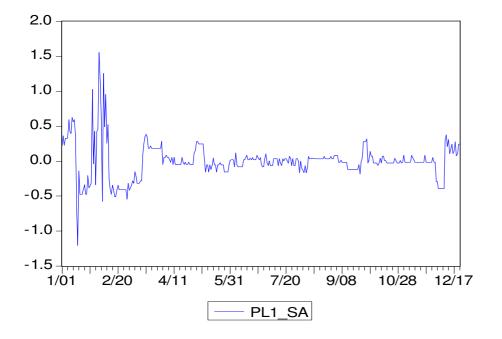
To check stationarity of the series place_1 (or roma_1) Dickey-Fuller test was used:

Dickey-Fuller unit root test

ADF Test Statistic	-3.383272	1% Critical Value*	-3.4509
		5% Critical Value	-2.8700
		10% Critical Value	<u>-2.5712</u>

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PLACE1) Method: Least Squares Date: 07/13/07 Time: 18:51 Sample(adjusted): 1/06/2002 12/22/2002 Included observations: 351 after adjusting endpoints Variable Coefficient Std Error t Statistic											
Variable	Coefficient	Std. Error	t-Statistic	Prob.							
PLACE1(-1)	-0.093492	0.027634	-3.383272	0.0008							
D(PLACE1(-1))	-0.344311	<u>0.056070</u>	<u>-6.140768</u>	0.0000							
D(PLACE1(-2))	-0.123533	0.055705	-2.217604	0.0272							
D(PLACE1(-3))	-0.308220	0.055182	<u>-5.585529</u>	0.0000							
D(PLACE1(-4))	0.057928	0.053222	<u>1.088426</u>	0.2772							
<u>C</u>	<u>0.076450</u>	<u>0.025598</u>	<u>2.986551</u>	0.0030							
R-squared	0.295459	Mean depende	ent var	-0.001614							
Adjusted R-squared	0.285249	S.D. depender	nt var	0.221804							
S.E. of regression	0.187519	Akaike info ci	riterion	-0.492922							
Sum squared resid	12.13143	Schwarz crite	rion	-0.426925							
Log likelihood	92.50775	F-statistic		28.93617							
Durbin-Watson stat	<u>1.987829</u>	Prob(F-statisti	<u>ic)</u>	0.000000							


We can see that the series $place_1$ (roma_1) is not stationary. The correlogram of residuals is:

	: PLACE1 Workfile:										2
	View Procs Quick									-	-
w Procs Objects	Print Name Freeze Sa	mple Genr S	heet Sta	ts Ident							
					Cori	elogram of PLACE1					
ate: 07/16/07 Tir	ne: 10:50										
ample: 1/01/2002	12/22/2002										
cluded observation	ns: 356										
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Brok						
Autocorrelation	Faitial Conelation	~	FAC	Grotat	FIOD						
1		1 0.839	0.839	253.01	0.000						
	· •		0.310								
	1 1			665.74							
				861.47							
	1 76			1182.9							
	1 6		-0.129	1306.3							
·	1 14	8 0.553	-0.057	1418.2	0.000						
	=			1498.9							
·	₽		0.089								
	1 (1)		-0.021	1645.9 1705.4							
	1 🔡			1742.0							
				1780.7							
· •	• 	15 0.318									
· •	10			1857.6							
	' 		0.218								
	1 20	18 0.331 19 0.296	-0.088	1939.6							
	1 76										
· 🗖	1 1		0.017								
•	• 0			2073.5							
·	! '			2107.5							
	1			2136.6 2162.3							
				2162.3							
				2213.3							
1	1 10		-0.017								
•	1 10			2251.4							
	1 12		-0.002								
: 🗖			-0.120	2274.9 2283.0							
	<u> </u>			2203.0							
								F	Path = c:\windows	DB = none WF =	- 6
lnicio 🔡	S 2 Skype. T	🦝 eMule v		1000	nanuele_re	EViews - [Ser	Reproductor	Control de	v 3 IT (<) 😋 🧐 🧐 10:50	

If we look at the graph of the series roma_1 (place_1), it can be observed that every month the series roma_1 has different constants, they oscillate around different levels from month to month. Further, we will see that this is true for all series: roma_1, roma_2, roma_3, roma_4. The reason of this could be the influence of the temperature on the carbon dioxide emissions in Roma. We will "clean" these series from these fluctuations by regressing the series roma_1 on the dummy variables of the month.

From the table below it is easy to sea that all twelve dummy variables are significant.

Dependent Variable: PL Method: Least Squares Date: 07/13/07 Time: 1 Sample: 1/01/2002 12/2	18:50			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
M1	1.672003	0.047724	35.03503	0.0000
M2	1.009921	0.050215	20.11180	0.0000
M3	0.716129	0.047724	15.00572	0.0000
M4	0.946667	0.048513	19.51382	0.0000
M5	0.654122	0.047724	13.70642	0.0000
M6	0.581852	0.048513	11.99382	0.0000
M7	0.563441	0.047724	11.80630	0.0000
M8	0.666229	0.047724	13.96011	0.0000
M9	0.617778	0.048513	12.73437	0.0000
M10	0.926882	0.047724	19.42181	0.0000
M11	0.915556	0.048513	18.87252	0.0000
M12	1.190404	0.056651	21.01311	0.0000
R-squared	0.582234	Mean depende	ent var	0.863722
Adjusted R-squared	0.568875	S.D. depender	nt var	0.404682
S.E. of regression	0.265715	Akaike info cr	riterion	0.220339
Sum squared resid	24.28786	Schwarz criter	rion	0.350954
Log likelihood	27.22030	Durbin-Wats	on stat	0.748879

The result of cleaning is the following series PL1_SA:

The PL1_SA seams to be stationary, the results of the unit root test are	The PL1	SA seams to	be stationary,	the results o	f the uni	t root test are:
--	---------	-------------	----------------	---------------	-----------	------------------

ADF Test Statistic	-5.149518	1% Critical Value*	-3.4509
		5% Critical Value	-2.8700
		10% Critical Value	-2.5712

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PL1_SA) Method: Least Squares Date: 07/13/07 Time: 20:41 Sample(adjusted): 1/06/2002 12/22/2002 Included observations: 351 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PL1_SA(-1)	-0.251612	0.048861	-5.149518	0.0000
$D(PL1_SA(-1))$	-0.196165	0.062922	-3.117580	0.0020
$D(PL1_SA(-2))$	0.018042	0.058538	0.308206	0.7581
$D(PL1_SA(-3))$	-0.225757	0.057223	-3.945212	0.0001
$D(PL1_SA(-4))$	0.110681	0.053474	2.069808	0.0392
С	-0.001478	0.009998	-0.147786	0.8826
R-squared	0.333037	Mean depende	ent var	-0.000242
Adjusted R-squared	0.323371	S.D. depender	nt var	0.227678
S.E. of regression	0.187282	Akaike info ci	riterion	-0.495452
Sum squared resid	12.10077	Schwarz crite	rion	-0.429456
Log likelihood	92.95188	F-statistic		34.45408
Durbin-Watson stat	1.985083	Prob(F-stat	istic)	0.000000

The correlogram of residuals is:

	: PL1_SA Workfile:							قارعا
	View Procs Quick							_
w Procs Objects	Print Name Freeze Sa	mple Genr S	heet Sta	ats Ident				
					C	correlogram of PL1_SA		
ate: 07/16/07 Tir	ne: 10:53							
ample: 1/01/2002	12/22/2002							
cluded observation	ns: 356							
Autocorrelation	Partial Correlation	AC	DAC	Q-Stat	Droh			
Autocorrelation	Faitial Collelation	AC	FAC	Grotat	FIOD			
1				139.46				
· ·	· •		0.276					
			-0.134					
			0.276					
	1 76			422.29				
	i iii			426.70				
i 🖬				428.22				
		9 -0.123	-0.156					
	1 10	10 -0.074						
- -	1 (9)	11 -0.174						
	1 21:	13 -0.320						
	1 76	14 -0.291						
· · · ·	1 1	15 -0.324	0.058	565.34	0.000			
	=	16 -0.291						
1	P	17 -0.292						
	1 51	18 -0.273 19 -0.319		657.21	0.000			
	1 31	20 -0.299						
	1 16	21 -0.232						
	· •	22 -0.092	0.146	753.26				
	⊂	23 -0.117						
<u> </u>	- '¶'	24 -0.119						
	1 18	25 -0.099 26 -0.026						
(1) (1 141	26 -0.028						
616	1 31	28 0.036		768.54				
10	1 10			769.16				
(P)	1 1	30 0.051	0.007					
1 Et	1 11			771.21				
	1 51	32 0.060						
								Path = c:\windows DB = none WF -
Inicio	S 2 Skype. The whole			0.48a		🐵 emanuele_results - Mi	EViews - [Series: PL1	IT 🔦 🔍 🧐 10:53

Now the ARMA model for PL1_SA series will be built so that the residuals will be uncorrelated. After the ARCH test will be made and using the results of the ARCH test, the GARCH model will be built if necessary.

The results of building AR(9) model for PL1_SA are shown below:

Dependent Variable: PL1_SA Method: Least Squares Date: 07/13/07 Time: 20:57 Sample(adjusted): 1/10/2002 12/22/2002 Included observations: 347 after adjusting endpoints Convergence achieved after 3 iterations

Coefficient	Std. Error	t-Statistic	Prob.
-0.009379	0.026164	-0.358486	0.7202
0.524751	0.053782	9.756980	0.0000
0.166014	0.060885	2.726669	0.0067
-0.157738	0.061201	-2.577398	0.0104
0.300535	0.061223	4.908862	0.0000
-0.095764	0.063329	-1.512172	0.1314
0.160877	0.061414	2.619543	0.0092
-0.063785	0.061357	-1.039564	0.2993
-0.048822	0.060684	-0.804536	0.4217
-0.157333	0.053490	-2.941354	0.0035
0.520659	Mean depend	ent var	-0.009276
0.507858	S.D. depende	nt var	0.257871
0.180904	Akaike info c	riterion	-0.553305
11.02875	Schwarz crite	erion	-0.442374
105.9984	F-statistic		40.67211
1.983739	Prob(F-statist	tic)	0.000000
.8920i	.89+.20i	.44+.74i	.4474i
11+.77i	1177i	5046i	50+.46i
92			
	-0.009379 0.524751 0.166014 -0.157738 0.300535 -0.095764 0.160877 -0.063785 -0.048822 -0.157333 0.520659 0.507858 0.180904 11.02875 105.9984 1.983739 .8920i 11+.77i	-0.009379 0.026164 0.524751 0.053782 0.166014 0.060885 -0.157738 0.061201 0.300535 0.061201 0.300535 0.061223 -0.095764 0.063329 0.160877 0.061414 -0.063785 0.061357 -0.048822 0.060684 -0.157333 0.053490 0.520659 Mean depend 0.507858 S.D. depende 0.180904 Akaike info c 11.02875 Schwarz crite 105.9984 F-statistic 1.983739 Prob(F-statist .8920i .89+.20i 11+.77i 1177i	-0.009379 0.026164 -0.358486 0.524751 0.053782 9.756980 0.166014 0.060885 2.726669 -0.157738 0.061201 -2.577398 0.300535 0.061223 4.908862 -0.095764 0.063329 -1.512172 0.160877 0.061414 2.619543 -0.063785 0.061357 -1.039564 -0.048822 0.060684 -0.804536 -0.157333 0.053490 -2.941354 0.520659 Mean dependent var 0.507858 S.D. dependent var 0.180904 Akaike info criterion 11.02875 Schwarz criterion 105.9984 F-statistic 1.983739 Prob(F-statistic) .8920i .89+.20i .44+.74i 11+.77i 1177i 5046i

The coefficients before constant and variables AR(5), AR(7), AR(8) are not significant. The Durbin-Watson statistic is almost 2. Looking at the correlogram of residuals, we can see that residuals are white noise.

and the second se	on: PL1_ARMA Wo						
	View Procs Quick Print Name Freeze Est						_ _ Z ×
				C	orrelogram of Residuals		
	12/22/2002 ns: 347 ies adjusted for 9 AR						
Autocorrelation	Partial Correlation	AC PA	C Q-Stat	Prob			
		1 0.001 0.0 2 0.006 -0.0 3 0.029 -0.0 4 0.048 0.0 5 0.033 0.0 6 0.026 0.0 7 0.030 0.0 8 0.021 0.0 9 0.014 -0.0 10 0.065 0.0 11 0.011 -0.0 12 0.078 0.0 13 0.072 0.0 14 0.033 0.0 15 0.034 0.0 16 0.086 0.0 17 0.053 0.0 18 0.061 0.0 19 0.053 0.0 19 0.053 0.0	006 0.0140 29 0.3114 48 1.1208 342 1.5146 28 1.7637 20895 16 2.3171 2.0895 16 2.2436 19 2.3171 64 3.8467 093 3.8913 82 6.0967 68 7.9848 27 8.3906 32 1.1496 52 1.1496 52 1.2533 70 13.917	0.143 0.107 0.092 0.136 0.185 0.185 0.129 0.125			
							Path = c:\windows DB = none WF = data
🛃 Inicio 📑	🔁 2 Skype. The whole	e 🝷 🌇 eMul	e v0.48a		📄 emanuele_results - Mi	🚆 EViews - [Equation: P	IT 🔇 🍳 🧐 😻 10:55 AM

To check that we found a good specification of the model, namely linear model AR(9), let us look at the correlogram of the residuals squared and the results of the ARCH test:

- - X - 8 ×

🏭 EViews - [Equation: PL1_ARMA Workfile: DATA]

113	File	Edit	Objects	View	Procs	Quick	Options	Window	Help	
Vie	w Pro	ocs 0	biects F	rint Na	ame Fre	eze E	stimate F	orecast St	ats Be:	sids

Correlogram of Residuals Squared

Date: 07/16/07 Tin Sample: 1/10/2002 Included observation Q-statistic probabilit	12/22/2002	A term(s)			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob

	- and - contraction		1.10		0. 0101	
· ·	· -	1	0.353	0.353	43.697	
· 🗖 ·	1 1	2	0.141	0.018	50.653	
1 🗖 1	1 I I	3	0.147	0.105	58.231	
· 🗖 ·	I D	4	0.170	0.098	68.440	
1 🗖 1	i] i	5	0.129	0.035	74.347	
1	I I I I I I I I I I I I I I I I I I I	6	0.236	0.188	94.105	
1	1	7	0.122	-0.043	99.404	
i 🖻	1 1	8	0.090	0.030	102.27	
1	I I I	9	0.185	0.129	114.53	
	I I I I I I I I I I I I I I I I I I I	10	0.306	0.194	148.21	0.000
i Di	 •	11	0.037	-0.184	148.71	0.000
i 🖻	1 D I	12	0.088	0.074	151.50	0.000
1	l 1	13	0.177	0.100	162.86	0.000
1	I I I I I I I I I I I I I I I I I I I	14	0.263	0.167	188.06	0.000
i 🖻 i		15	0.081	-0.146	190.44	0.000
	1 1	16	0.107	0.007	194.62	0.000
i Di	i du	17	0.052	0.013	195.63	0.000
	i 🗊	18	0.110	0.063	200.06	0.000
i 🗖 🗌	- ili	19	0.132	-0.035	206.48	0.000
1	10	20	0.145	-0.014	214.22	0.000

	Path = c:\windows	DB = none	WF = data
🄧 Inicio 🔰 💲 2 Skype. The whole 🔹 🌠 eMule v0.48a 🔛 emanuele_results - Mi 🔤 EViews - [Equation: P	п	0000	10:56 AM

ARCH Test:

F-statistic	49 21873	Probability	0.000000
Obs*R-squared		Probability	0.000000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/13/07 Time: 21:38 Sample(adjusted): 1/11/2002 12/22/2002 Included observations: 346 after adjusting endpoints

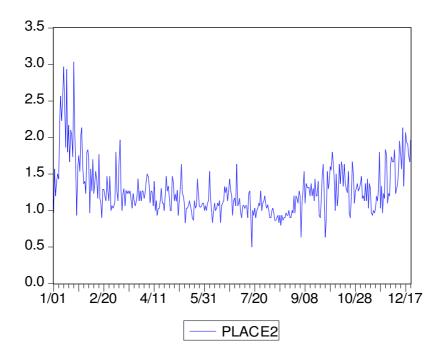
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.020164	0.006989	2.885288	0.0042
RESID^2(-1)	0.353377	0.050370	7.015606	0.0000
R-squared	0.125169	Mean depende	0.031423	
Adjusted R-squared	0.122626	S.D. depender	0.135074	
S.E. of regression	0.126522	Akaike info ci	-1.291041	
Sum squared resid	5.506667	Schwarz criter	-1.268808	
Log likelihood	225.3502	F-statistic	49.21873	
Durbin-Watson stat	2.009351	Prob(F-statisti	0.000000	

The results of the ARCH test and the correlogram of residuals squared show that GARCH(1,1) model should be used:

Dependent Variable: PL1_SA
Method: ML - ARCH
Date: 07/13/07 Time: 21:42
Sample(adjusted): 1/04/2002 12/22/2002
Included observations: 353 after adjusting endpoints
Convergence achieved after 35 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.009197	0.008380	1.097541	0.2724
AR(1)	0.547954	0.067856	8.075190	0.0000
AR(2)	0.158310	0.092429	1.712775	0.0868
AR(3)	-0.092231	0.067057	-1.375416	0.1690
	Variance	Equation		
С	0.000264	4.33E-05	6.094861	0.0000
ARCH(1)	0.233224	0.047566	4.903220	0.0000
GARCH(1)	0.777626	0.022194	35.03756	0.0000
R-squared	0.427606	Mean depend	ent var	-0.002315
Adjusted R-squared	0.417680	S.D. depender	nt var	0.261396
S.E. of regression	0.199471	Akaike info c	riterion	-1.741639
Sum squared resid	13.76691	Schwarz crite	rion	-1.664967
Log likelihood	314.3994	F-statistic		43.07976
Durbin-Watson stat	2.078242	Prob(F-statist	ic)	0.000000
Inverted AR Roots	.4803i	.48+.03i	41	

Looking at the correlogram of residuals one can conclude that the residuals are seemed to be white noise. The correlogram of the standardized residuals squared and the results of the ARCH LM test also confirm that adequate

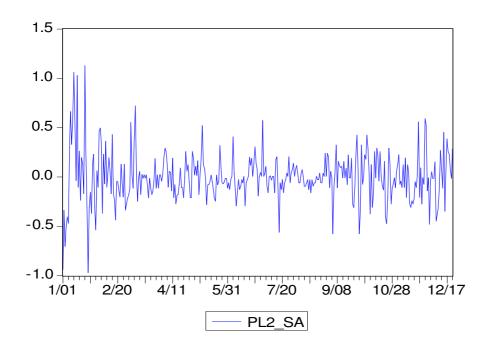

GARCH model (where there is no autocorrelation of residuals squared) was chosen.

🗒 EViews - [Equati	on: PL1_GARCH_W	orkfile <u>: DAT</u> A	1							- 7 🗙
File Edit Objects	View Procs Quick	Options Windo	w Help							- 8 ×
View Procs Objects	Print Name Freeze Es	timate Forecast		logram o	f Standardized Residual	ls Squared				
Date: 07/16/07 Tin Sample: 1/04/2002 Included observatior Q-statistic probabilit	12/22/2002	MA term(s)		5						
Autocorrelation	Partial Correlation	AC I	PAC Q-Stat	Prob						
		2 -0.006 -1 3 0.015 (4 -0.005 -(5 -0.049 -(7 -0.004 -(8 0.077 (9 0.011 (10 0.067 (11 -0.027 -(13 -0.030 -(13 -0.036 -(14 0.162 (15 -0.044 -(16 -0.053 -(17 -0.014 -(18 0.023 ()	0.004 0.0050 0.005 0.0170 0.015 0.0937 0.025 0.1003 0.022 1.1597 0.004 1.1660 0.079 3.3341 0.010 3.3755 0.067 5.0360 0.028 5.3120 0.030 6.6503 0.038 16.567 0.038 16.567 0.) 2 3 0.751 0.612 0.763 0.884 0.649 0.764 0.724 0.724 0.724 0.724 0.775 0.147 0.167 0.1173 0.123 0.222 2.0269						
								Path = c:\windo	ws DB = none	WF = data
🦺 Inicio 🔋	🛯 😒 2 Skype. The whole	e 🝷 🌇 el	Mule v0.48a	Ι	👜 emanuele_results - Mi	🔛 EViews - [Equa	tion: P	П	0.00	10:58 AM
ARCH Test: F-statistic Obs*R-square	ed	0.00489 0.00491		babilit babilit		0.944285 0.944087				
Method: Leas Date: 07/16/0 Sample(adjus	ariable: STD_	16 12/22/2	2002	dpoint	S					
Varia	ble (Coefficie	nt St	d. Erro	or t-Statistic	Prob.				
C STD_RES	ID^2(-1)	1.01070 -0.00373		.15627 .05345		0.0000 0.9443				
R-squared		0.00001			endent var	1 006941				

$_{\rm STD}_{\rm KESID} 2(-1)$	-0.003738	0.033433 -0.009933	0.9445
R-squared	0.000014	Mean dependent var	1.006941
Adjusted R-squared	-0.002843	S.D. dependent var	2.748496
S.E. of regression	2.752400	Akaike info criterion	4.868490
Sum squared resid	2651.498	Schwarz criterion	4.890442
Log likelihood	-854.8542	F-statistic	0.004891
Durbin-Watson stat	1.999998	Prob(F-statistic)	0.944285

PLACE_2 (ROMA_2)

The original data of series roma_2:



The results of the unit root test again showed that this place_2 is not stationary. Again, as it was made with the place_1 we will "clean" these series from these fluctuations by regressing the series place_2 on dummy variables of the month. The results of this regression are:

Dependent Variable: PLACE2 Method: Least Squares Date: 07/13/07 Time: 11:08 Sample: 1/01/2002 12/22/2002 Included observations: 356

Included observations: 356							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
M1	1.903763	0.045372	41.95874	0.0000			
M2	1.336111	0.047741	27.98661	0.0000			
M3	1.245341	0.045372	27.44717	0.0000			
M4	1.208210	0.046122	26.19580	0.0000			
M5	1.112545	0.045372	24.52037	0.0000			
M6	1.126481	0.046122	24.42381	0.0000			
M7	1.060036	0.045372	23.36308	0.0000			
M8	0.960394	0.045372	21.16699	0.0000			
M9	1.209259	0.046122	26.21855	0.0000			
M10	1.374791	0.045372	30.30025	0.0000			
M11	1.240741	0.046122	26.90112	0.0000			
M12	1.680303	0.053859	31.19806	0.0000			
R-squared	0.507081	Mean depende	ent var	1.278881			
Adjusted R-squared	0.491319	S.D. dependent var		0.354200			
S.E. of regression	0.252622	Akaike info criterion		0.119283			
Sum squared resid	21.95337	Schwarz criter	ion	0.249898			
Log likelihood	-9.232307	Durbin-Watso	n stat	1.406185			

All the dummy variables are significant. Now, the following series PL2_SA was received:

The results of the unit root test for the new series PL2_SA show that there is stationarity:

ADF Test Statistic	-8.863673	1% Critical Value*	-3.4509
		5% Critical Value	-2.8700
		10% Critical Value	-2.5712

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PL2_SA) Method: Least Squares Date: 07/13/07 Time: 22:09 Sample(adjusted): 1/06/2002 12/22/2002 Included observations: 351 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PL2_SA(-1)	-0.815094	0.091959	-8.863673	0.0000
D(PL2_SA(-1))	0.056341	0.083760	0.672653	0.5016
D(PL2_SA(-2))	0.069280	0.074562	0.929157	0.3535
$D(PL2_SA(-3))$	0.064513	0.065116	0.990741	0.3225
D(PL2_SA(-4))	0.067902	0.052093	1.303489	0.1933
C	0.006498	0.012442	0.522281	0.6018
R-squared	0.382456	Mean dependent var		0.001966
Adjusted R-squared	0.373506	S.D. depender	nt var	0.294350
S.E. of regression	0.232982	Akaike info ci	riterion	-0.058763
Sum squared resid	18.72684	Schwarz criter	0.007233	
Log likelihood	16.31294	F-statistic		42.73286
Durbin-Watson stat	1.998415	Prob(F-statisti	ic)	0.000000

The correlogram of residuals is:

🔡 EViews - [Series	: PL2_SA Workfile:	DATA]						
🔲 File Edit Objects	; View Procs Quick	Options Win	dow He	elp				_ @ ×
View Procs Objects	Print Name Freeze Sa	mple Genr S	heet Sta	ats Ident	Line Ba	ar		
					C	Correlogram of PL2_SA		
Date: 07/16/07 Tir	ne: 11:00							^
Sample: 1/01/2002								
Included observatio								
0	Destiel Consolution	10	DIC	0.04-4	Duck			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prop			
1	I I	1 0.275	0.275	27.158	0.000			
1	() (32.030				
i 🌐	1.1			32.566				
1 1	1 10			32.576				
۹.	()	5 -0.066						
- U -	11	6 -0.040						
- U	_ ₽	7 0.024						
<u> </u>	_ _	8 -0.060						
!	- <u></u>	9 -0.114						
		10 -0.167						
		11 -0.119						
 :	1 21	13 -0.143						
	1 7	14 -0.011						
	i i i i i i i i i i i i i i i i i i i	15 -0.147						
		16 -0.164						
		17 -0.107						
		18 -0.053						
i li	1 10	19 -0.015						
11	10	20 -0.002	-0.049	90.725	0.000			
· 🗖 ·	() ()	21 0.120	0.060	96.159	0.000			
(I)	() (i)	22 0.032	-0.062	96.552	0.000			
i Di	1 1	23 0.059						
) D	1 D	24 0.113						
ب		25 0.125						
- Pi	- I	26 0.060						
· 🕑	1 1	27 0.070						
2 P	1 11	28 0.079						
· P	1 Y	29 0.067						
11	1 11	30 0.005						
뷥	1 1	31 -0.023						
		32 -0.003						~
								Path = c:\windows DB = none WF = data
🛃 Inicio 🔰	S 2 Skype. The whol	- 67	eMule vi	0.495	1	emanuele_results - Mi	Review Province PLO	IT < 😒 🤨 🤨 11:00 AM
	Z skype. me whoi	•••• Y 🚺	endie vi	b.Hod			EViews - [Series: PL2	

The results of the AR(1) model are:

Dependent Variable: PL2_SA											
Method: Least Squares											
Date: 07/13/07 Time: 2	Date: 07/13/07 Time: 22:14										
Sample(adjusted): 1/02/2	Sample(adjusted): 1/02/2002 12/22/2002										
Included observations: 3	55 after adjusti	ng endpoints									
Convergence achieved after 3 iterations											
Variable	Coefficient	Std. Error	t-Statistic	Prob.							
С	0.003954	0.017194	0.229983	0.8182							
AR(1)	0.276108	0.050135	5.507332	0.0000							
R-squared	0.079124	Mean depende	ent var	0.002640							
Adjusted R-squared	0.076515	S.D. depender	nt var	0.243983							
S.E. of regression	0.234463	Akaike info ci	riterion	-0.057423							
Sum squared resid	19.40538	Schwarz criter	rion	-0.035608							
Log likelihood	12.19253	F-statistic		30.33070							
Durbin-Watson stat	2.028503	Prob(F-statisti	c)	0.000000							
Inverted AR Roots	.28										

The correlogram of residuals show that the residuals are white noise:

Cardina and	on: PL2_ARMA Wo		-					
	View Procs Quick			20				_ 8 ×
View Procs Ubjects	Print Name Freeze Est	imate Foreca	stets	Hesids	C	orrelogram of Residuals		
Date: 07/16/07 Tin Sample: 1/08/2002 Included observatior Q-statistic probabilit Autocorrelation	12/22/2002	MA term(s) AC	PAC	Q-Stat	Proh	-		
		1 -0.008 2 0.018 3 0.001 4 0.002 5 0.033 6 0.041 7 0.062	-0.008 0.017 0.001 0.022 0.033 0.041 0.062 0.033 -0.033 -0.058 -0.041 -0.093 0.006 -0.085 -0.085 -0.114 -0.026 -0.002	0.0231 0.1315 0.1319 0.5299 1.1253 2.4929 2.5519 2.5479 5.7867 6.7729 7.2324 9.9110 9.9533 13.147 18.539 19.139 19.268	0.110 0.241 0.122 0.148 0.204 0.128 0.191 0.107 0.029 0.039 0.056			
								Path = c:\windows DB = none WF = data
🛃 Inicio 🔰	😂 2 Skype. The whole	e 🔹 🌇	eMule v().48a		👜 emanuele_results - Mi	🚆 EViews - [Equation: P	IT 🔇 😒 🧐 😫 11:01 AM

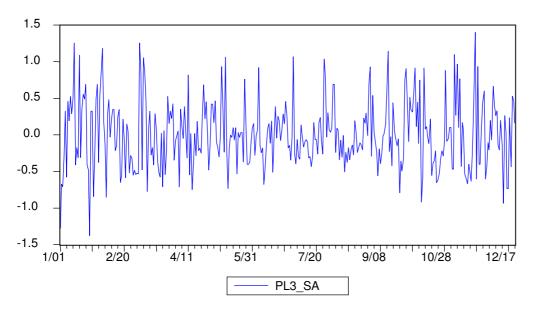
The results of the ARCH LM test show that GARCH model should not be used for the series PL2_SA:

ARCH Test:

F-statistic	1.909019	Probability	0.167949
Obs*R-squared	1.909510	Probability	0.167018

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/13/07 Time: 22:19 Sample(adjusted): 1/03/2002 12/22/2002 Included observations: 354 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.050790	0.007381	6.881511	0.0000
RESID^2(-1)	0.073435	0.053149	1.381673	0.1679
R-squared	0.005394	Mean depende	ent var	0.054799
Adjusted R-squared	0.002569	S.D. dependent var		0.127854
S.E. of regression	0.127690	Akaike info criterion		-1.272792
Sum squared resid	5.739250	Schwarz criter	rion	-1.250931
Log likelihood	227.2841	F-statistic		1.909019
Durbin-Watson stat	1.980439	Prob(F-statisti	ic)	0.167949


PLACE_3 (ROMA_3)

The same approach with the regression of the series on the dummy variables of the months is used for the series place_3. The results of this regression are:

Dependent Variable: PLACE3 Method: Least Squares Date: 07/13/07 Time: 10:50 Sample: 1/01/2002 12/22/2002 Included observations: 356

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M1	2.377419	0.083520	28.46516	0.0000
M2	1.787235	0.087881	20.33705	0.0000
M3	1.810842	0.083520	21.68146	0.0000
M4	1.550000	0.084901	18.25658	0.0000
M5	1.470251	0.083520	17.60351	0.0000
M6	1.347407	0.084901	15.87035	0.0000
M7	1.466129	0.083520	17.55416	0.0000
M8	1.242115	0.083520	14.87201	0.0000
M9	1.627531	0.084901	19.16977	0.0000
M10	1.654839	0.083520	19.81361	0.0000
M11	1.635556	0.084901	19.26429	0.0000
M12	2.237879	0.099143	22.57226	0.0000
R-squared	0.322808	Mean depende	ent var	1.670675
Adjusted R-squared	0.301154	S.D. depender	nt var	0.556265
S.E. of regression	0.465021	Akaike info criterion		1.339660
Sum squared resid	74.38825	Schwarz criter	rion	1.470276
Log likelihood	-226.4595	Durbin-Watso	n stat	1.609630

Again, all the dummy variables are significant. The evolution of the "cleaned" series PL3_SA can be found in the figure below:

The PL3_SA is stationary, it is easy to see both from the graph and from the unit root test:

ADF Test Statistic	-7.936220	1% Critical Value*5% Critical Value	-3.4509 -2.8700			
		10% Critical Value	-2.5712			
*MacKinnon critical values for rejection of hypothesis of a unit root.						

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PL3 SA) Method: Least Squares Date: 07/13/07 Time: 22:31 Sample(adjusted): 1/06/2002 12/22/2002 Included observations: 351 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PL3_SA(-1)	-0.778169	0.098053	-7.936220	0.0000
$D(PL3_SA(-1))$	-0.057083	0.090930	-0.627767	0.5306
$D(PL3_SA(-2))$	-0.036246	0.081199	-0.446377	0.6556
D(PL3 SA(-3))	0.020666	0.068932	0.299802	0.7645
$D(PL3_SA(-4))$	0.083827	0.053055	1.580005	0.1150
C	0.005662	0.023791	0.237983	0.8120
R-squared	0.423412	Mean depende	ent var	-0.000457
Adjusted R-squared	0.415055	S.D. depender	nt var	0.582642
S.E. of regression	0.445615	Akaike info c	riterion	1.238222
Sum squared resid	68.50748	Schwarz crite	rion	1.304218
Log likelihood	-211.3079	F-statistic		50.66946
Durbin-Watson stat	2.011016	Prob(F-statist	ic)	0.000000

The correlogram of residuals is:

	: View Procs Quick Print Name Freeze Sa				ine P-	.1			_ 6
WIT TOCS ODJECTS	Third Hearter 3a	impio deni c	moort ste	Ramaent		orrelogram of PL3_SA			
ate: 07/16/07 Tin					-				
ate: 07/16/07 11n ample: 1/01/2002									
cluded observation									
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob				
Adioconelation	T artial Correlation		1.40	G-Otat					
· 🗖	' 			12.160					
		2 0.065	0.033						
16	1 16	4 0.063							
ան	€ -	5 -0.058							
–	■ !			27.828					
<u></u> !	l <u>P</u>			28.108					
.	1 51	8 -0.086							
		10 -0.107							
d ,	∂ ,	11 -0.117							
1	1 10	12 -0.060							
<u>'U'</u>	1 1	13 -0.024							
<u>'</u>		14 0.082							
.		16 -0.057							
i di s	i i i	17 -0.069							
u i	1 1 1	18 -0.077							
<u> </u>		19 -0.162							
		20 -0.101		68.135 72.403					
15	1 16	22 -0.013							
ili -	1 1	23 0.007							
i p i		24 0.057							
· P		25 0.087							
· · · · ·	1 51	26 -0.029							
		28 0.034							
i bi				79.452					
(b)	1 10			80.388					
' 🖻 '	1 · P			82.876					
i Bi		32 0.062							
								Path = c:\windows	DB = none WF = o
lnicio	S 2 Skype. The whole	T an	eMule vi	2002002	1	imanuele_results - Mi	EViews - [Series: PL3	3 п (< 🔁 🧐 🦁 11:03 A

The model AR(6) was chosen, the results of this model are:

Dependent V	ariable: PL3 SA	4							
Method: Least Squares									
Date: $07/13/07$ Time: 03:13									
Sample(adjusted): 1/07/2002 12/22/2002									
	0 1	ations							
Coefficient	Std. Error	t-Statistic	Prob.						
0.008131	0.025799	0.315160	0.7528						
0.156153	0.053159	2.937486	0.0035						
0.028128	0.053665	0.524135	0.6005						
0.061404	0.053698	1.143499	0.2536						
0.062987	0.053687	1.173215	0.2415						
-0.065732	0.053790	-1.222013	0.2225						
-0.154813	0.052823	-2.930776	0.0036						
0.067764	Mean depender	nt var	0.009232						
0.051457	S.D. dependent	t var	0.451767						
0.439990	Akaike info cri	terion	1.215668						
66.40177	Schwarz criteri	on	1.292826						
-205.7418	F-statistic		4.155438						
1.964755	Prob(F-statistic	:)	0.000478						
.69+.35i	.6935i	0376i	03+.76i						
59+.32i		5932i							
	13 02 12/22/2002 0 after adjustin vergence ach Coefficient 0.008131 0.156153 0.028128 0.061404 0.062987 -0.065732 -0.154813 0.067764 0.051457 0.439990 66.40177 -205.7418 1.964755 .69+.35i	13 02 12/22/2002 after adjusting endpoints ivergence achieved after 3 iter Coefficient Std. Error 0.008131 0.025799 0.156153 0.053159 0.028128 0.053665 0.061404 0.053698 0.062987 0.053687 -0.065732 0.053790 -0.154813 0.052823 0.067764 Mean depender 0.051457 S.D. dependent 0.439990 Akaike info cri 66.40177 Schwarz criteri -205.7418 F-statistic 1.964755 Prob(F-statistic .69+.35i .6935i	02 12/22/2002 0 after adjusting endpoints ivergence achieved after 3 iterations Coefficient Std. Error t-Statistic 0.008131 0.025799 0.156153 0.053159 0.028128 0.053665 0.028128 0.053665 0.061404 0.053698 1.143499 0.062987 0.053687 -0.065732 0.053790 -0.154813 0.052823 -2.930776 0.061407 Mean dependent var 0.051457 S.D. dependent var 0.439990 Akaike info criterion -205.7418 F-statistic 1.964755 Prob(F-statistic) .69+.35i .6935i 0376i						

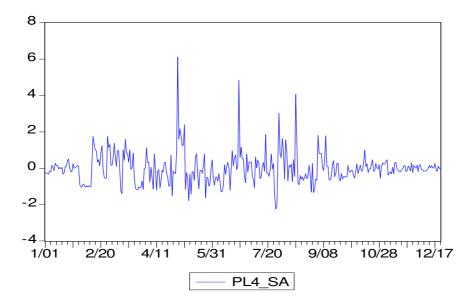
It is easy to see that only the coefficients before AR(1) and AR(6) are significant. The residuals seem to be white noise.

The results of the ARCH LM test and correlogram of residuals squared show that GARCH model is not necessary in this case:

ARCH Test:			
F-statistic Obs*R-squared	3.477359 3.462701	Probability Probability	0.063058 0.062768
Obs R-squareu	5.402/01	Tiodaolinty	0.002708

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/13/07 Time: 22:38 Sample(adjusted): 1/08/2002 12/22/2002 Included observations: 349 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.170950	0.018247	9.368886	0.0000
RESID^2(-1)	0.099660	0.053444	1.864768	0.0631
R-squared	0.009922	Mean dependent var		0.189910
Adjusted R-squared	0.007069	S.D. dependent var		0.284056
S.E. of regression	0.283051	Akaike info criterion		0.319333
Sum squared resid	27.80084	Schwarz criter	rion	0.341425
Log likelihood	-53.72353	F-statistic		3.477359
Durbin-Watson stat	2.015487	Prob(F-statisti	ic)	0.063058


PLACE_4 (ROMA_4)

The results of the regression of the Place 4 on the dummy variables of the months are the following:

Dependent Variable: PLACE4 Method: Least Squares Date: 07/13/07 Time: 10:51 Sample: 1/01/2002 12/22/2002 Included observations: 356

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M1	1.996834	0.156180	12.78546	0.0000
M2	2.929696	0.164334	17.82769	0.0000
M3	4.035484	0.156180	25.83865	0.0000
M4	4.314444	0.158762	27.17559	0.0000
M5	2.344086	0.156180	15.00886	0.0000
M6	2.574444	0.158762	16.21577	0.0000
M7	2.414158	0.156180	15.45752	0.0000
M8	1.708961	0.156180	10.94224	0.0000
M9	1.126749	0.158762	7.097105	0.0000
M10	1.436858	0.156180	9.200005	0.0000
M11	1.276049	0.158762	8.037510	0.0000
M12	1.085466	0.185394	5.854919	0.0000
R-squared	0.587778	Mean depende	ent var	2.294073
Adjusted R-squared	0.574597	S.D. depender	nt var	1.333234
S.E. of regression	0.869574	Akaike info ci	iterion	2.591500
Sum squared resid	260.1187	Schwarz criter	rion	2.722116
Log likelihood	-449.2870	Durbin-Watso	n stat	1.220791

Now we can look at the graph of the transformed series PL4_SA:

The results of the unit root test show stationarity:

ADF Test Statistic	-7.363903	1% Critical Value*	-3.4509
		5% Critical Value	-2.8700
		10% Critical Value	-2.5712

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PL4_SA) Method: Least Squares Date: 07/13/07 Time: 22:43 Sample(adjusted): 1/06/2002 12/22/2002 Included observations: 351 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PL4_SA(-1)	-0.575665	0.078174	-7.363903	0.0000
$D(PL4_SA(-1))$	-0.069383	0.076244	-0.910018	0.3634
$D(PL4_SA(-2))$	-0.006611	0.071154	-0.092914	0.9260
$D(PL4_SA(-3))$	0.061492	0.063905	0.962235	0.3366
$D(PL4_SA(-4))$	0.043796	0.053775	0.814431	0.4160
C	0.002365	0.042417	0.055755	0.9556
R-squared	0.313834	Mean depende	ent var	0.000412
Adjusted R-squared	0.303890	S.D. depender	nt var	0.952471
S.E. of regression	0.794677	Akaike info c	riterion	2.395185
Sum squared resid	217.8716	Schwarz crite	rion	2.461181
Log likelihood	-414.3549	F-statistic		31.55880
Durbin-Watson stat	1.989678	Prob(F-statist	ic)	0.000000

The correlogram of residuals is:

	Wiew Procs Quick						
v Procs Objects	Print Name Freeze Sa	mple Genr S	heet Sta	ats Ident	Line Ba	ir 🔤	
					(Correlogram of PL4_SA	
ite: 07/16/07 Tir	ne: 11:08						
mple: 1/01/2002							
luded observatio							
· · · · ·	5 K 1 6 1 K		BAG	0.01.1			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
1		1 0.389	0.389	54.457	0.000		
1	i 🛛	2 0.217					
1 🗖	i 🗊			79.977			
i 📴	10	4 0.060	-0.033	81.277	0.000		
1 1	1	5 -0.005	-0.044	81.286	0.000		
) (D	⊨			84.223			
1 1	1 (1)	7 0.006					
Q (E '	8 -0.097					
4 1	- U	9 -0.098					
· ·	Q !	10 -0.164					
- P	• •	11 -0.061					
<u>1</u> 11	1 11	12 -0.031					
<u>-</u> - <u>-</u>	1 12	13 0.001					
' E '	' <mark>-</mark> '	14 0.058					
<u>'</u>	1 11	15 0.072					
<u>"</u> "		16 -0.072					
3 1	""	17 -0.082					
_	1 21	18 -0.109 19 -0.156					
.		20 -0.007					
111		20 -0.007					
		22 -0.069					
		23 -0.124					
		24 -0.082					
- -		25 -0.169					
	1 7.	26 -0.067					
36		27 0.038					
i fii	1 1	28 0.060					
ωū.	1 16	29 0.023					
d i		30 -0.082					
	1 10	31 -0.062					
O 1		32 -0.089	-0.066	156.68	0.000		
el.		133 0.003	0.081	160 11	0.000		 Path = c:\windows DB = none WF =

The results of the AR(10) model are:

Dependent Variable: PL4_SA
Method: Least Squares
Date: 07/13/07 Time: 22:48
Sample(adjusted): 1/11/2002 12/22/2002
Included observations: 346 after adjusting endpoints
Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.002089	0.060695	0.034416	0.9726
AR(1)	0.350350	0.054304	6.451629	0.0000
AR(2)	0.063968	0.057569	1.111152	0.2673
AR(3)	0.053428	0.057458	0.929861	0.3531
AR(4)	-0.010613	0.057526	-0.184493	0.8537
AR(5)	-0.083949	0.056966	-1.473673	0.1415
AR(6)	0.147065	0.056977	2.581140	0.0103
AR(7)	-0.011441	0.057530	-0.198877	0.8425
AR(8)	-0.092034	0.057459	-1.601729	0.1102
AR(9)	-0.006531	0.057572	-0.113442	0.9097
AR(10)	-0.108179	0.054289	-1.992673	0.0471
R-squared	0.198774	Mean depend	lent var	0.003377
Adjusted R-squared	0.174857	S.D. depende		0.867436
S.E. of regression	0.787956	Akaike info c	criterion	2.392526
Sum squared resid	207.9928	Schwarz crite	erion	2.514811
Log likelihood	-402.9070	F-statistic		8.310946
Durbin-Watson stat	1.979873	Prob(F-statist	tic)	0.000000
Inverted AR Roots	.8425i	.84+.25i	.49+.68i	.4968i
	01+.69i	0169i	40+.72i	4072i
	7622i	76+.22i		

Coefficients before AR(1), AR(6), AR(10) are significant. Looking at the correlogram of residuals one can conclude that the residuals are white noise:

	ion: PL4_ARMA Wo							
	View Procs Quick							- 8 ×
View Procs Objects	Print Name Freeze Est	timate Foreca	st Stats	Resids		orrelogram of Residuals		
Date: 07/16/07 Tin Sample: 1/11/2002 Included observatior Q-statistic probabilit Autocorrelation	12/22/2002	RMA term(s AC		Q-Stat				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 0.004 3 0.013 4 0.015 5 -0.002 6 0.003 7 -0.005 8 -0.039 9 -0.035 10 -0.023	0.003 0.013 0.015 -0.002 0.003 -0.004 -0.034 -0.034 -0.023 0.065 0.010 0.004 0.057 0.089 -0.080 -0.035	0.1937 0.7468 1.1806 1.3774 2.8030 2.8293 2.8320 4.0456 7.0649 8.2007 8.5068	0.243 0.418 0.400 0.216 0.224 0.290			
								Path = c:\windows DB = none WF = data
🛃 Inicio 🔰	S 2 Skype. The whole	🌃	eMule v0	.48a		👜 emanuele_results - Mi	🔛 EViews - [Equation: P	IT < 😒 🧐 🕲 11:11 AM

The results of the ARCH LM test and the correlogram of residuals squared show that there is no need to use GARCH model:

F-statistic	0.048117	Probability	0.826503
Obs*R-squared	0.048391	Probability	0.825887

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 07/13/07 Time: 22:52 Sample(adjusted): 1/12/2002 12/22/2002 Included observations: 345 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.595738	0.128898	4.621784	0.0000
RESID^2(-1)	0.011843	0.053991	0.219356	0.8265
R-squared	0.000140	Mean depend	lent var	0.602878
Adjusted R-squared	-0.002775	S.D. depende	ent var	2.313369
S.E. of regression	2.316576	Akaike info	criterion	4.523838
Sum squared resid	1840.718	Schwarz crite	erion	4.546119
Log likelihood	-778.3621	F-statistic		0.048117
Durbin-Watson stat	2.000465	Prob(F-statis	tic)	0.826503

File Edit Objects	View Procs Quick	Options Win	dow He	lp				- 8
w Procs Objects	Print Name Freeze Es	timate Foreca	st Stats	Resids				
					Correl	ogram of Residuals Squa	ared	
ate: 07/16/07 Tir	ne: 11:12							
ample: 1/11/2002	12/22/2002							
cluded observation								
statistic probabili	ties adjusted for 10 A	RIVIA term(s	9					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob			
նի	դի	1 0.012	0.012	0.0489				
				0.1826				
				0.2037				
				0.7306				
- in	1 1			1.2462				
· P·	• P			3.5226				
	1 12	8 0.003		3.5250				
		10 -0.013						
- du	1 10	11 -0.022			0.050			
(P)		12 0.043			0.107			
	1 11	13 -0.005			0.213			
i bi	1 16	15 0.089						
անն	իններություն				0.250			
1	1 1	17 0.001						
		18 0.015 19 0.025		7.9274				
i i i	i iii				0.605			
- III	1 10	21 -0.011						
P	1 19	22 0.008						
		23 -0.020 24 0.015						
	i i i	25 0.036						
- U)	1 10	26 -0.023	-0.022	9.2493	0.903			
- 11	1 12	27 0.018						
11		28 -0.015						
i ji	i i i	30 0.018			0.975			
1	1 10	31 -0.007						
		130 0 003	200.0	a 6001	n aan			Path = c:\windows DB = none WF = d

Vector Autoregression (VAR) model for "Roma" series series

Theoretical background:

Vector autoregression (VAR) is an econometric model used to capture the evolution and the interdependencies between multiple time series, generalizing the univariate AR models. All the variables in a VAR are treated symmetrically by including for each variable an equation explaining its evolution based on its own lags and the lags of all the other variables in the model. Based on this feature, Christopher Sims advocates the use of VAR models as a theory-free method to estimate economic relationships, thus being an alternative to the "incredible identification restrictions" in structural models.

Definition

A VAR model describes the evolution of a set of *n* variables (called **endogenous variables**) measured over the same sample period (t = 1, ..., T) as a linear function of only their past evolution. The variables are collected in a $n \times 1$ vector y_t , which has as the ith element $y_{i,t}$ the time *t* observation of variable y_i . For example, if the ith variable is GDP, then $y_{i,t}$ is the value of GDP at t.

A (reduced) p-th order VAR, denoted VAR(p), is

 $y_t = c + A_1 y_{t-1} + A_2 y_{t-2} + \dots + A_p y_{t-p} + e_t,$

where *c* is a $n \times 1$ vector of constants (**intercept**), A_i is a $n \times n$ matrix (for every i = 1, ..., p) and e_t is a $n \times 1$ vector of error terms satisfying

$$\mathrm{E}(e_t) = 0$$

 $\mathbf{E}(e_t e_{t-k}') = 0$

$$\mathrm{E}(e_t e_t') = \Omega$$

The *k*-periods back observation y_{t-k} is called the *k*-th **lag** of *y*. Thus, a p-th order VAR is also called a **VAR with p lags**.

VAR for Place_1, Place_2, Place_3, Place_4:

The VAR model was built for different p – where p is the order of the VAR or a number of lags in the VAR. We have four endogeneous variables in our model, namely Place_1, Place_2, Place_3 and Place_4. The final model was chosen using the Akaike Iinformation Criteria. The model with 2 lags seemed to be the best. So, the following VAR model was considered:

PLACE1 = C(1,1)*PLACE1(-1) + C(1,2)*PLACE1(-2) + C(1,3)*PLACE2(-1) + C(1,4)*PLACE2(-2) + C(1,5)*PLACE3(-1) + C(1,6)*PLACE3(-2) + C(1,7)*PLACE4(-1) + C(1,8)*PLACE4(-2) + C(1,9)

PLACE2 = C(2,1)*PLACE1(-1) + C(2,2)*PLACE1(-2) + C(2,3)*PLACE2(-1) + C(2,4)*PLACE2(-2) + C(2,5)*PLACE3(-1) + C(2,6)*PLACE3(-2) + C(2,7)*PLACE4(-1) + C(2,8)*PLACE4(-2) + C(2,9)

PLACE3 = C(3,1)*PLACE1(-1) + C(3,2)*PLACE1(-2) + C(3,3)*PLACE2(-1) + C(3,4)*PLACE2(-2) + C(3,5)*PLACE3(-1) + C(3,6)*PLACE3(-2) + C(3,7)*PLACE4(-1) + C(3,8)*PLACE4(-2) + C(3,9)

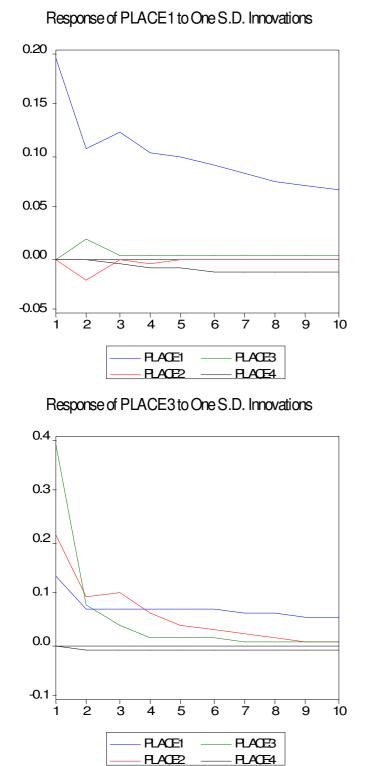
PLACE4 = C(4,1)*PLACE1(-1) + C(4,2)*PLACE1(-2) + C(4,3)*PLACE2(-1) + C(4,4)*PLACE2(-2) + C(4,5)*PLACE3(-1) + C(4,6)*PLACE3(-2) + C(4,7)*PLACE4(-1) + C(4,8)*PLACE4(-2) + C(4,9)

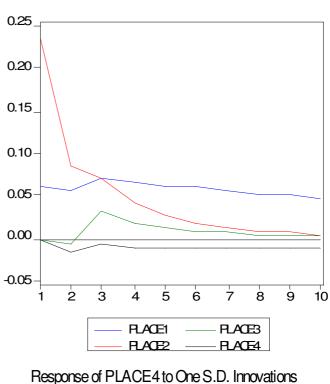
The results of the model are presented below:

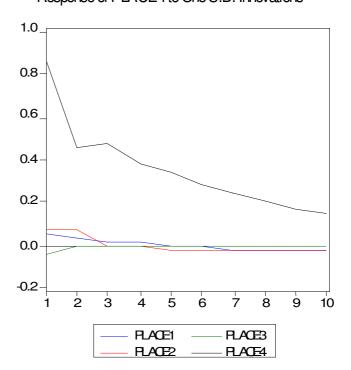
Date: 07/14/07 Time: 18:48
Sample(adjusted): 1/03/2002 12/22/2002
Included observations: 354 after adjusting endpoints
Standard errors & t-statistics in parentheses

Standard errors & t-	statistics in pare	ntheses		
	PLACE1	PLACE2	PLACE3	PLACE4
PLACE1(-1)	0.551963	0.174062	0.152010	-0.069002
	(0.05259)	(0.06557)	(0.12542)	(0.23493)
	(10.4958)	(2.65459)	(1.21203)	(-0.29371)
PLACE1(-2)	0.340976	0.069709	0.051494	0.081401
	(0.05355)	(0.06677)	(0.12772)	(0.23924)
	(6.36705)	(1.04398)	(0.40318)	(0.34025)
PLACE2(-1)	-0.130889	0.390013	0.200888	0.125580
	(0.05063)	(0.06312)	(0.12074)	(0.22616)
	(-2.58544)	(6.17871)	(1.66386)	(0.55528)
PLACE2(-2)	0.116323	0.098273	0.246818	-0.385035
	(0.04971)	(0.06198)	(0.11855)	(0.22206)
	(2.34013)	(1.58560)	(2.08201)	(-1.73394)
PLACE3(-1)	0.046545	-0.014547	0.205345	0.033547
	(0.02685)	(0.03348)	(0.06405)	(0.11997)
	(1.73320)	(-0.43445)	(3.20622)	(0.27963)
PLACE3(-2)	-0.035646	0.079935	0.048153	0.020235
	(0.02660)	(0.03317)	(0.06345)	(0.11885)
	(-1.33987)	(2.40976)	(0.75894)	(0.17026)
PLACE4(-1)	0.000161	-0.015458	-0.008815	0.528857
	(0.01162)	(0.01449)	(0.02771)	(0.05190)
	(0.01388)	(-1.06703)	(-0.31812)	(10.1890)
PLACE4(-2)	-0.008629	0.004864	0.002612	0.274544
	(0.01165)	(0.01453)	(0.02779)	(0.05206)
	(-0.74051)	(0.33478)	(0.02779) (0.09398)	(5.27383)
С	0.109805	0.361161	0.516764	0.679883
	(0.04993)	(0.06225)		
	(0.04993) (2.19921)	(0.06223) (5.80140)	(0.11908) (4.33979)	(0.22305) (3.04816)
R-squared	0.759370	0.530403	0.304170	0.575828
Adj. R-squared	0.753790	0.519514	0.288035	0.565992
Sum sq. resids	13.39871	20.83001	76.20777	267.3914
S.E. equation	0.197071	0.245717	0.469992	0.880368
F-statistic	136.0922	48.70904	18.85138	58.54366
Log likelihood	77.21830	-0.880544	-230.4617	-452.6410
Akaike AIC	-0.385414	0.055822	1.352891	2.608141
Schwarz SC	-0.287042	0.154194	1.451263	2.706513
Mean dependent	0.857491	1.278950	1.672204	2.297241
S.D. dependent	0.397164	0.354482	0.557007	1.336335
Determinant Residual Covariance		0.000234		
Log Likelihood		-529.6687		
Akaike Information Criteria		3.195869		
Schwarz Criteria		3.589356		

Therefore, VAR model with substituted coefficients is:

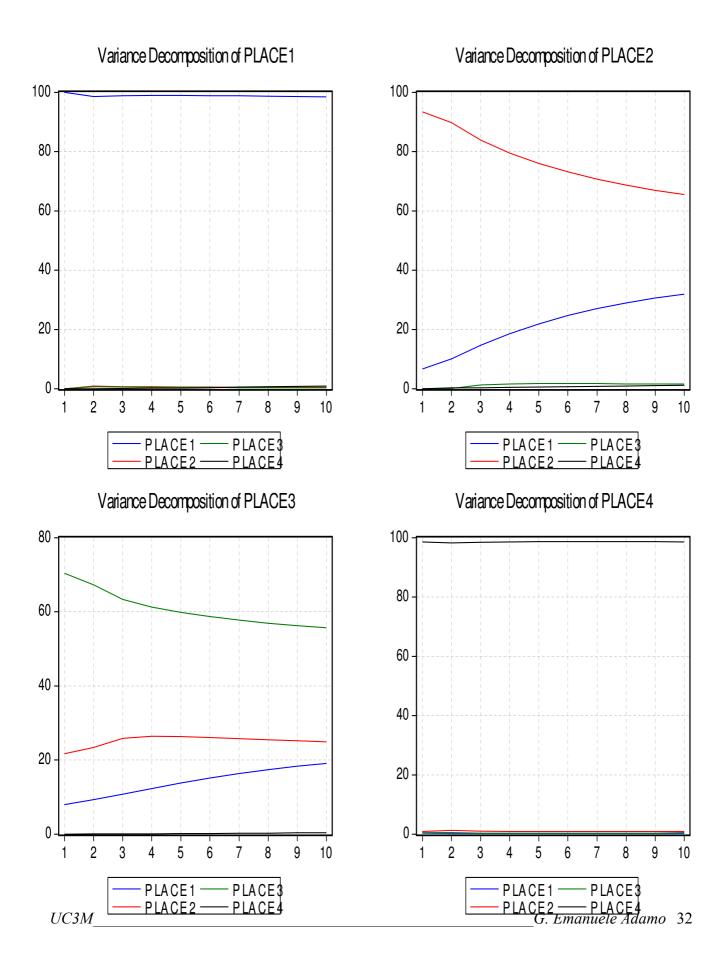

PLACE1 = 0.5519630866*PLACE1(-1) + 0.34097562*PLACE1(-2) - 0.1308887824*PLACE2(-1) + 0.1163227792*PLACE2(-2) + 0.04654480392*PLACE3(-1) - 0.03564620008*PLACE3(-2) + 0.0001612730357*PLACE4(-1) - 0.008629322165*PLACE4(-2) + 0.1098049974


PLACE2 = 0.174061703*PLACE1(-1) + 0.06970926065*PLACE1(-2) + 0.3900134474*PLACE2(-1) + 0.09827261244*PLACE2(-2) - 0.01454710597*PLACE3(-1) + 0.0799352489*PLACE3(-2) - 0.01545803919*PLACE4(-1) + 0.004864295046*PLACE4(-2) + 0.3611613433


PLACE3 = 0.1520103912*PLACE1(-1) + 0.05149362355*PLACE1(-2) + 0.2008876741*PLACE2(-1) + 0.2468178363*PLACE2(-2) + 0.2053452228*PLACE3(-1) + 0.04815326724*PLACE3(-2) - 0.008814945369*PLACE4(-1) + 0.002611945406*PLACE4(-2) + 0.5167636868

PLACE4 = -0.06900152809*PLACE1(-1) + 0.0814007968*PLACE1(-2) + 0.1255799382*PLACE2(-1) - 0.3850349024*PLACE2(-2) + 0.03354667015*PLACE3(-1) + 0.02023534816*PLACE3(-2) + 0.5288572968*PLACE4(-1) + 0.2745437302*PLACE4(-2) + 0.6798832701

The responses of Place_1, Place_2, Place_3 and Place_4 to one standard deviation innovations of Place_1, Place_2, Place_3 and Place_4 are:



Response of PLACE2 to One S.D. Innovations

The impulse variance decomposition of Place_1, Place_2, Place_3, Place_4 are:

Conclusions:

in the paper the carbon dioxide emissions in Roma city were modeled using time series analysis. The models for 4 different places were built. For the first place the GARCH model was chosen like the most adequate while for other 3 places the ARMA models were chosen. At the end_The VAR model was built for these four places.

6. References

1. http://en.wikipedia.org/wiki/Carbon_dioxide

2. Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Hogberg, P.; Linder, S.; Mackenzie, F.T.; Moore, B 3rd.; Pedersen, T.; Rosenthal, Y.; Seitzinger, S.; Smetacek V.; Steffen W. (2000). "The global carbon cycle: a test of our knowledge of earth as a system". *Science* **290** (5490): 291-296.

3. Santoro, M.; et al (2006). "Amorphous silica-like carbon dioxide". Nature 441 (7095): 857-8

4. Pena D., Tiao G., Tsay R., (2001) "A course in Time series Análisis", J. Wiley, New York.

5. Mills T. (2003) "Modelling trends and Cycles in Economic time series" Palgrave, UK