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Abstract

We propose using the integrated periodogram to classify time series. The method assigns

a new time series to the group that minimizes the distance between the time series integrated

periodogram and the group mean of integrated periodograms. Local computation of these

periodograms allows to apply this approach to nonstationary time series. Since the integrated

periodograms are curves, we apply functional data depth-based techniques to make the clas-

sification robust which is a clear advantage over other competitive procedures. The method

provides small error rates with both simulated and two real data examples, improving on

existing approaches, and presents good computational behavior.
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1 Introduction

Classification of time series is an important tool in several fields. Time series can be studied from

both time and frequency domains. For short stationary series, a time domain approach based on

usual multivariate techniques can be applied. However, the frequency point of view is particularly

important for nonstationary series (Huang, Ombao and Stoffer [2004]) and, thus, our proposal

follows a frequency domain approach. There exist many papers on supervised classification meth-

ods for stationary processes in both domains (see e.g. references in chapter 7 of Taniguchi and

Kakizawa [2000]). Several authors have already proposed methods for discriminating between

nonstationary models: By using optimal scoring, Hastie et al. (1995) cast the classification prob-

lem into the regression framework, where a penalized technique can be applied to the coefficients:

[in these cases] “it is natural, efficient and sometimes essential to impose a spatial smoothness

constraint on the coefficients, both for improved prediction performance and interpretability”.

Their proposal is designed for situations where the discriminant variables (predictors) are highly

correlated, e.g. when a function is discretized. The following approaches are based on Dahlhaus’s

local stationarity framework. In Shumway (2003) the Kullback-Leibler discrimination information

measure (it is not a real distance) is used, and it is evaluated by using the smoothed time-varying

spectral estimator. For clustering, they consider the symmetrized version of this measure. In a

first step, Huang et al. (2004) select from SLEX a basis explaining the difference between the

classes of time series as well as possible; in a second step, they construct a discriminant criterion

that is related to the SLEX spectra of the different classes: a time series is assigned to the class

minimizing the Kullback-Leibler divergence between the estimated spectrum and the spectrum

of the class. Sakiyama and Taniguchi (2004) use a consistent classification criterion which is an

approximation of the Gaussian likelihood ratio. By introducing and influence function, they in-

vestigate the behavior of their measure with respect to infinitesimal perturbations of the spectra.

In Hirukawa (2004) the approximation of the measure introduced by Sakiyama and Taniguchi

(2004) is generalized to nonlinear time-varying spectral measures (including the Kullback-Leibler

and Chernoff discrimination information measures). They also propose another approach for non-

Gaussian processes. The discrimination of Chandler and Polonik (2006) is based on some features

—shape measures or, better, measures of concentration of the variance function— that are mea-

sured for each time series. Since it is not distance-based, their approach does not require aligning

the series. Both time and frequency domains are connected in Maharaj and Alonso (2007), who

combine the techniques of wavelet analysis with those of discriminant analysis. Other related line

of research is unsupervised classification of time series, see Liao (2005) for a comprehensive survey.

In this paper, we propose using the integrated periodogram for classifying (locally stationary)

time series. The integrated periodogram has the following properties that improve the classification

procedure: i) it is a nondecreasing, smooth curve; ii) it presents good asymptotic properties: while

the periodogram is an asymptotically unbiased but inconsistent estimator of the spectral density,
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the integrated periodogram is a consistent estimator of the spectral distribution (see, chapter 6 of

Priestly, 1981); iii) although for stationary processes the integrated spectrum is usually estimated

through the spectrum, from a theoretical point of view, the spectral distribution always exists

whereas the spectral density only exists under absolutely continuous distributions.

Since the integrated periodogram is a function, we shall use specific techniques for functional

data. There is a vast body of existing literature on the statistical analysis of functional data and,

particularly, on their classification. For example, a penalized discriminant analysis is proposed

in Hastie, Buja and Tibshirani (1995); it is adequate for situations with many highly correlated

predictors, as those obtained by discretizing a function. Nonparametric tools to classify a set of

curves have been introduced in Ferraty and Vieu (2003), where the authors calculate the posterior

probability of belonging to a given class of functions by using a consistent kernel estimator. A new

method for extending classical linear discriminant analysis to functional data has been analyzed in

James and Hastie (2001): this technique is particularly useful when only fragments of the curves

are observed. The problem of unsupervised classification or clustering of curves is addressed in

James and Sugar (2003), who elaborate a flexible model-based approach for clustering functional

data; it is effective when the observations are sparse, irregularly spaced or occur at different time

points for each subject. In Abraham, Cornillon, Matzner-Løber and Molinari (2003) unsupervised

clustering of functions is considered; they fit the data by B-splines and the partition is done over

the estimated model coefficients using a k-means algorithm. In a related problem, Hall, Poskitt

and Presnell (2001) explore a functional data-analytic approach to perform signal discrimination.

Nevertheless, many of these procedures are highly sensitive to outliers. A natural and simple way

to classify functions is to minimize the distance between the new curve and a reference function

of the group. The technique presented in this paper follows this approach. We first consider the

mean of the integrated periodograms as the group representative element and then, as a second

approach, we use the idea of “deepest” curves instead of the mean to make the method robust.

The notion of statistical depth has already been extended to functional data (see, e.g., López-

Pintado and Romo, 2009). In López-Pintado and Romo (2006) the concept of depth is used to

classify curves. A statistical depth expresses the “centrality” or “outlyingness” of an observation

within a set of data and provides a criterion to order observations from center-outward. Since

robustness is an interesting feature of statistical methods based on depth, we have applied the ideas

in López-Pintado and Romo (2006) to add robustness to our time series classification procedure.

Their method considers ordering the curves within a sample based on a notion of depth for

functions and obtaining the α-trimmed mean as a reference curve of each group.

The paper is organized as follows. In section 2 we include some definitions and describe the

classification algorithm based on the integrated periodogram. Section 3 explains how depth can be

used to make the method robust. Next two sections, 4 and 5, show the behavior of the procedure

with simulated and real data, respectively. A brief summary of conclusions is given in section 6.
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2 Classifying Time Series

We propose transforming the initial time series into functional data by considering the integrated

periodogram of each time series. This allows us to use functional data classification techniques.

Let {Xt} be a stationary process with autocovariance function σh = cov(Xt, Xt−h), such that∑+∞
h=−∞ |σh| < +∞, and autocorrelation function ρh = σh/σ0. The spectral density is f(ω) =∑+∞
h=−∞ ρh exp(−2πihω), and it holds that ρh =

∫ +1/2

−1/2 exp(2πihω)dF (ω), where F is the spectral

distribution function.

The periodogram is the corresponding sample version of the spectral density and expresses the

contribution of the frequencies to the variance of the series. Let X = (x1, . . . , xT ) be a time series.

The periodogram is

IT (ωk) =

(T−1)∑
h=−(T−1)

ρ̂h exp(−2πihωk), (1)

where ρ̂h denotes the sample autocorrelation at lag h and ωk takes values in {k/T | k = 0, . . . , [T/2]},
the discrete Fourier frequencies set. Its cumulative version is the integrated or cumulative peri-

odogram FT (ωk) =
∑k

i=1 IT (ωi). The normalized version is

FT (ωk) =
k∑
i=1

IT (ωi)/
m∑
i=1

IT (ωi), (2)

where m is the number of Fourier frequencies. Notice that the denominator in (2) is proportional to

the variance of the time series since 2
∑m

i=1 IT (ωi) =
∑T

t=1(xt− x̄)2. Therefore, the nonnormalized

version of the cumulative periodogram consider not only the shape of the integrated spectrum

but also the scale. The normalized version of the cumulative periodogram emphasizes the shape

of the curves instead of the scale. For instance, if two time series have spectral densities such

that fX(ω) = cfY (ω) for some c > 1, then these series will have different integrated periodograms

but equal normalized integrated periodograms. See Diggle and Fisher (1991) for details on the

comparison of cumulative periodograms. As a simple criterion we propose using the normalized

version of the cumulative periodogram when the graphs of the functions of the different groups

tend to intersect inside their domain of definition. If this is not the case, we recommend using the

nonnormalized version. Notice also that the integrated periodogram is a consistent estimator of

the integrated spectrum (see, v.g., chapter 6 of Priestley (1981)).

Definitions (1) and (2) correspond to some particular values of ω, but they can be extended

to any value in the interval (−1/2,+1/2). Since the periodogram is defined only for stationary

series, to classify nonstationary time series we will consider them as locally stationary; this allows

us to split the series into blocks, compute the integrated periodogram of each block and merge

these periodograms in a final curve: the idea is to approximate the locally stationary processes by

piecewise stationary processes. Figure 2(b) provides a blockwise spectral distribution estimation

of the locally stationary process spectrum. There are two opposite effects when we increase the

numbers of blocks: first, we get closer to the locally stationarity assumption; second, the integrated
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periodogram becomes a worse estimator of the integrated spectrum. Notice that this blockwise

approach is compatible with the locally stationary time series model of Dahlhaus (1997) where

an increasing T implies that more and more data of local structures are available, i.e., we can

consider the number of blocks as an increasing function of T . In the appendix, we present the

locally stationary model of Dahlhaus (1997) and we propose an integrated spectrum based on

this model. This integrated spectrum can be considered as a population version of our blockwise

integrated spectrum.

A simple criterion to classify functions is to assign a new observation to the group to which,

on the basis of some distance, the function is nearest. In our context, we propose to classify a

new series in the group minimizing the distance between the integrated periodogram of the series

and a reference curve from the group. We first consider the group mean as a reference curve. If

Ψgi(ω), i = 1, . . . , N , are functions of group g, the mean is

Ψ̄g =
1

N

N∑
i=1

Ψgi(ω). (3)

In our case, Ψgi(ω) is the concatenated integrated periodogram of the ith series in group g. To

measure proximity, we have chosen the L1 distance,

d(Ψ1,Ψ2) =

∫ +1/2

−1/2
|Ψ1(ω)−Ψ2(ω)|dω

=
k∑
j=1

∫ +1/2

−1/2
|F (j)

1 (ω)− F (j)
2 (ω)|dω, (4)

where k is the number of blocks in which the time series is divided and F (j) is the integrated peri-

odogram of the jth block. The integrated periodograms belong to the L1[−1/2,+1/2] space. Some

other distances could have also been considered. For example, the L2 distance would highlight

large differences between functions.

Based on these definitions we introduce the following classification algorithm:

Algorithm 1

Let {X1, . . . , XM} be a sample containing M series from population PX and let

{Y1, . . . , YN} be a sample containing N series from PY . The classification method

includes the following steps:

1. Split each series into k stationary blocks, calculate the integrated periodogram

in each block, and merge the integrated periodograms: {ΨX1 , . . . ,ΨXM
} and

{ΨY1 , . . . ,ΨYN}, where ΨXi
= (F

(1)
Xi
. . . F

(k)
Xi

) , ΨYi = (F
(1)
Yi
. . . F

(k)
Yi

), and F
(j)
Xi

is the integrated periodogram of the jth block of the ith series of population X;

and analogously for Y . Figures 2(b) and 6 illustrate the obtained ΨXi
.

2. Calculate the corresponding group means, Ψ̄X and Ψ̄Y .
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3. Let ΨZ = (F
(1)
Z . . . F

(k)
Z ) be the integrated periodogram of a new series Z. Z

is classified in the group PX if d(ΨZ , Ψ̄X) < d(ΨZ , Ψ̄Y ); and in the group PY ,

otherwise.

Remark 1 Set k = 1 to apply the algorithm to stationary series. For nonstationary series, we

have used a dyadic splitting of the series into blocks in the simulation and real data computations,

k = 2p, p = 0, 1, . . .. The implementation with blocks of different lengths, as suggested by visual

inspection of data, is also possible. To select the number of blocks, our code implements an optional

nested/secondary cross-validation loop to select in each run the value of k that minimizes the global

error (we register these values during the runs to form weights that can be thought as relative

frequencies). When the previous loop is not called, the minimum global error of each run is

registered and the user is given an estimation of the error that would have arised if the number

of blocks had been optimized. For this loop to be applicable to small real data sets, the training

data of the primary cross-validation loop are used for both optimizing the number of blocks and

estimating the final misclassification error rates.

Remark 2 Although we are considering G = 2, the classification method is obviously extended to

the general case in which there are G different groups or populations Pg, g = 1, . . . , G.

Remark 3 The same methodology could be implemented by using different classification criteria

between curves, reference functions for each group (as we do in the following section) or distances

between curves.

Remark 4 Notice that in this paper, we only consider nonstationarities in the autocovariance

structure but we assume that the series are mean stationary. In the case of nonstationaries in

the mean (trends, level shifts, piecewise trends, etc.), we should divide the analysis in two cases:

( i) The nonstationaries in the mean are different in the two populations so they will be useful to

improve the classification procedure. In this case, a possibility is to follow the admissible linear

procedure described in section 7.2.3 of Taniguchi and Kakizawa (2000) but this is out of the scope

of this paper. ( ii) The nonstationaries in the mean are equal in the two populations so they will not

be useful to improve the classification procedure. In this case, we should remove the nonstationaries

in the mean by, for instance, the Hodrick-Prescott filter (see Hodrick and Prescott, 1997) or the

detrending procedure based on Loess (see Cleveland et al, 1990).

3 Robust Time Series Classification

Our classification method depends on the reference curve used to measure the distance to the

group. The mean of a set of functions is not robust to the presence of outliers. Thus, robustness

can be added to this technique by using a robust reference curve. Instead of considering the

mean of the integrated periodograms in the group, we shall consider the α-trimmed mean, where
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only the deepest elements are averaged. This trimming adds robustness by making the reference

function more resistant to outliers.

The statistical depth expresses the “centrality” of each element inside the group. Different

definitions of depth are already available. In this section we first describe the concept of depth

extended to functional data by López-Pintado and Romo (2009) and then we propose a robust

version of our classification algorithm.

Let G(Ψ) = {(t,Ψ(t)) | t ∈ [a, b]} denote the graph in R2 of a function Ψ ∈ C[a, b], the set

of real continuous functions on the interval [a, b]. Let Ψi(t), i = 1, . . . , N, be functions in C[a, b].

The functions Ψij(t), j = 1, . . . , k, determine a band in R2,

B(Ψi1 , . . . ,Ψik) = {(t, y) ∈ [a, b]× R | minr=1,...,k Ψir(t) ≤ y ≤ maxr=1,...,k Ψir(t)} (5)

Given a function Ψ,

BD
(j)
N (Ψ) =

(
N
j

)−1 ·∑1≤i1<i2<...<ij≤N I{G(Ψ) ⊂ B(Ψi1 , . . . ,Ψij)} (6)

j ≥ 2, expresses the proportion of bands determined by different curves Ψi1 , . . . ,Ψij that contain

the graph of Ψ (the indicator function takes the value I{A} = 1 if A occurs, and I{A} = 0,

otherwise). For functions Ψi(t), i = 1, . . . , N , the band depth of any of these curves Ψ is

BDN,J(Ψ) =
J∑
j=2

BD
(j)
N (Ψ), (7)

2 ≤ J ≤ N . If Ψ̃ is the stochastic process generating the observations Ψ̃i(t), i = 1, . . . , N , the

population versions of these indexes are BD(j)(Ψ) = P{G(Ψ) ⊂ B(Ψ̃i1 , . . . , Ψ̃ij)}, j ≥ 2, and

BDJ(Ψ) =
∑J

j=2BD
(j =

∑J
j=2 P{G(Ψ) ⊂ B(Ψ̃i1 , . . . , Ψ̃ij)}, J ≥ 2, respectively. In order to

illustrate the calculation of the band depth, consider the following example: Assume that we have

two time series generated by AR(1) models:

X
(i)
t = φX

(i)
t−1 + ε

(i)
t ,

with φ(1) = 0.1, φ(2) = 0.2 and an additional time series generated by a MA(1) model:

X
(3)
t = θε

(3)
t−1 + ε

(3)
t ,

where θ = 0.1 and the ε
(i)
t are i.i.d. N(0,1). Figure 1, shows the three (theoretical) integrated

periodograms. In order to calculate the depth of each function (integrated periodogram), we

determine the
(
3
2

)
= 3 bands defined by these three functions, i.e. the bands defined by (1,2),

(1,3) and (2,3). Notice that integrated periodogram of the first series is included in the three

bands and integrated periodograms two and three are include in only two bands, therefore their

band depths are 1, 2/3 and 2/3, respectively. For instance, as the graph shows, the integrated

periodogram of the first series is the deepest element.
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Figure 1: Example of three integrated periodograms
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Series 1: AR(1) with φ = 0.1

Series 2: AR(1) with φ = 0.2

Series 3: MA(1) with θ = 0.1

The modified band depth is a more flexible notion of depth defined also in López-Pintado and

Romo (2009). The indicator function in (6) is replaced by the length of the set where the function

is inside the corresponding band. For any function Ψ of Ψi(t), i = 1, . . . , N , and 2 ≤ j ≤ N , let

Aj(Ψ) ≡ A(Ψ; Ψi1 , . . . ,Ψij) ≡ {t ∈ [a, b] | minr=i1,...,ij Ψr(t) ≤ Ψ(t) ≤ maxr=i1,...,ij Ψr(t)} (8)

be the set of points in the interval [a, b] where the function Ψ is inside the band. If λ is the

Lebesgue measure on the interval [a, b], λ(Aj(Ψ)) is the “proportion of time” that Ψ is inside the

band. Thus,

MBD
(j)
N (Ψ) =

(
N
j

)−1
(λ[a, b])−1 ·

∑
1≤i1<i2<...<ij≤N λ(A(Ψ; Ψi1 , . . . ,Ψij)) (9)

with 2 ≤ j ≤ N , is the generalized version of BD
(j)
N . If Ψ is always inside the band, the measure

λ(Aj(Ψ)) is 1 and this definition generalizes the definition of depth given in (7). Finally, the

modified band depth of any of the curves Ψ in Ψi(t), i = 1, . . . , N , is

MBDN,J(Ψ) =
J∑
j=2

MBD
(j)
N (Ψ), (10)

with 2 ≤ J ≤ N . If Ψ̃i(t), i = 1, . . . , N , are independent copies of the stochastic process Ψ̃, the

population version of these indexes are MBD(j)(Ψ) = Eλ(A(Ψ; Ψ̃i1 , . . . , Ψ̃ij)) and MBDJ(Ψ) =∑J
j=2MBD(j)(Ψ) =

∑J
j=2 Eλ(A(Ψ; Ψ̃i1 , . . . , Ψ̃ij)), respectively, for 2 ≤ J ≤ N .

Given a sample of functions, (Ψg1 ,Ψg2 , . . . ,ΨgN ), we can order the sample by calculating the

sample modified band depth, MBDN,J(Ψgi), of each function Ψgi for i = 1, 2, . . . , N . The ordered

sample is denoted by (Ψg(1) ,Ψg(2) , . . . ,Ψg(N)
), where Ψg(1) is the deepest function, Ψg(2) is the second

deepest function and so on.
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To robustify the algorithm 1, we propose to consider the α-trimmed mean of the group elements

as the reference function. If Ψg(i)(t), i = 1, . . . , N , are functions of the class g ordered by decreasing

depth, the α-trimmed mean is

Ψ̄α
g =

1

N − [Nα]

N−[Nα]∑
i=1

Ψg(i)(t), (11)

where [·] is the integer part function. Notice that the median (in the sense of “the deepest”)

function is also included in the previous expression. We will use α = 0.2 in our simulation and

real data analysis; it means that for each group the 20% least deep data are not considered when

we compute the average.

In step 2 of the new algorithm, the α-trimmed mean replaces the mean as the reference curve

for each class. This will make the classification more robust.

Algorithm 2

Let {X1, . . . , XM} be a sample containing time series from the population PX , and

let {Y1, . . . , YN} be a sample from PY . The classification method includes the following

steps:

1. Split each series into k stationary blocks, calculate the integrated periodogram

in each block and merge the integrated periodograms: {ΨX1 , . . . ,ΨXM
} and

{ΨY1 , . . . ,ΨYN}, where ΨXi
= (F

(1)
Xi
. . . F

(k)
Xi

), ΨYi = (F
(1)
Yi
. . . F

(k)
Yi

), and F
(j)
Xi

is

the integrated periodogram of the jth block of the ith series of the population X;

and analogously for Y .

2. Obtain the corresponding group α-trimmed means, Ψ̄α
X and Ψ̄α

Y .

3. Let ΨZ = (F
(1)
Z . . . F

(k)
Z ) be the integrated periodogram of a new series Z. Z

is classified in the group PX if d(ΨZ , Ψ̄
α
X) < d(ΨZ , Ψ̄

α
Y ), and in the group PY ,

otherwise.

Remark 5 We have used sample modified band depth with J = 2, because this depth is very stable

in J , providing similar center-outward ordering in a collection of functions for different values of

J (López-Pintado and Romo [2006,2009]).

Remark 6 The same algorithm could be implemented using a different functional depth.

Remark 7 Computing the depth of functional data is the most time-consuming task in our pro-

posed robust classification algorithm. We implement a preprocessing step to help scale our algo-

rithm to large real data sets as follows. The deepest elements are identified at the beginning so as

to maintain only them in the training samples during the runs (although all data are classified).

On the one hand, the depth is calculated only once; on the other hand, due to the use of fewer
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but better elements in the training samples, the computational time may be reduced in some cases

for which the time spent in calculating the depth is compensated. With this preprocessing step the

sizes of the training samples are slightly reduced in most runs, although this has little effect when

sample sizes are large. This technique can be applied outside the framework of this work.

MATLAB code is available at http://www.Casado-D.org/. Methods DbC and DbC -α, as

well as other characteristics (loop to select the number of blocks, robustifying approach, access

to the computational times, etc) are implemented in two scripts, one for the simulation exercises

and another for the application to real data. The code is fast and easy to execute and extend.

The reader can reproduce, apply or extend our results and plots easily. A help file is also included

with the code.

4 Simulation Study

In this section we evaluate our two algorithms and compare them with the method proposed in

Huang et al (2004), who use the SLEX (smooth localized complex exponentials) model for a nonsta-

tionary random process introduced by Ombao et al (2001). SLEX is a set of Fourier-type bases that

are at the same time orthogonal and localized in both time and frequency domains. In a first step,

they select from SLEX a basis explaining as good as possible the difference between the classes of

time series. After this, they construct a discriminant criterion that is related to the SLEX spectra

of the different classes: a time series is assigned to the class minimizing the Kullback-Leibler di-

vergence between the estimated spectrum and the spectrum of the class. For the SLEXbC method

we have used an implementation provided by the authors (see http://hombao.ics.uci.edu/).

To select the parameters, we have performed a small optimization for each simulation and the

results were similar to the values recommended to us by the authors.

We have considered the same models as Huang et al (2004). For each comparison of two classes,

we run 1000 times the following steps. We generate training and test sets for each model/class.

The training sets have the same sizes (sample size and series length) as the ones used by Huang

et al (2004), and the test sets contain always 10 series of the length involved in each particular

simulation. The methods are tested with the same data sets; this is, in all the models exactly the

same simulated time series are used by the three methods, including our algorithms for different

values of k.

Simulation 1. We compare an autoregressive process of order one {Xt} with Gaussian

white noise Yt:

X
(i)
t = φ ·X(i)

t−1 + ε
(i)
t if t = 1, . . . , T

Y
(j)
t = ε

(j)
t if t = 1, . . . , T

(12)
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with i = 1, . . . ,M and j = 1, . . . , N , where ε
(i)
t and ε

(j)
t are i.i.d. N(0, 1). Each training

data set has M = N = 8 series of length T = 1024. Six comparisons have been run,

with the parameter φ of the AR(1) model taking the values −0.5, −0.3, −0.1, +0.1,

+0.3 and +0.5. Series are stationary in this case.

Simulation 2. We compare two processes composed half by white noise and half by

an autoregressive process of order one. The value of the AR(1) parameter is −0.1 in

the first class and +0.1 in the second class:

X
(i)
t =

{
ε
(i)
t if t = 1, . . . , T/2

X
(i)
t = −0.1 ·X(i)

t−1 + ε
(i)
t if t = T/2 + 1, . . . , T

Y
(j)
t =

{
ε
(j)
t if t = 1, . . . , T/2

Y
(j)
t = +0.1 · Y (j)

t−1 + ε
(j)
t if t = T/2 + 1, . . . , T

(13)

with i = 1, . . . ,M and j = 1, . . . , N . Different combinations of training sample sizes

—M = N = 8 and 16— and series lengths —T = 512, 1024 and 2048— are considered.

In this case, the series are made up of stationary parts, but the whole series are not

stationary.

Simulation 3. In this case, the stochastic models in both classes are slowly time-

varying second order autoregressive processes:

X
(i)
t = at;0.5 ·X(i)

t−1 − 0.81 ·X(i)
t−2 + ε

(i)
t if t = 1, . . . , T

Y
(j)
t = at;τ · Y (j)

t−1 − 0.81 · Y (j)
t−2 + ε

(j)
t if t = 1, . . . , T

(14)

with i = 1, . . . ,M , j = 1, . . . , N and at;τ = 0.8 · [1 − τ cos(πt/1024)], where τ is a

parameter. Each training data set has M = N = 10 series of length T = 1024. Three

comparisons have been done, the first class having always the parameter τ = 0.5,

and the second class having respectively the values τ = 0.4, 0.3 and 0.2. Note that a

coefficient of the autoregressive structure is not fixed and it changes with time, making

the processes not stationary. See figure 2(a) for an example of the integrated spectrum

corresponding to these processes.

We have checked that values between τ = −0.9 and τ = +0.9 do not generate,

for any value of t, roots inside the unit circle for the characteristic polynomial of the

autoregressive process.

To compare our procedure and the SLEXbC method in terms of robustness, we have performed

additional simulations where the training set is contaminated with an outlier time series. In all

11



Figure 2: Time-varying autoregressive model with τ = 0.4.
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cases we contaminate the PX population by replacing a series by another one following a different

model. We consider three levels of contamination: one weak contamination (A) and two strong

contaminations (B and C).

Contamination A. For simulation 1, we replace the autoregressive structure for a

moving average; that is, we generate a MA(1) model —with the MA parameter equal

to the AR parameter— instead of a AR(1) model. For Simulation 2, we change only

the autoregressive half of one series in a class (the other half is white noise). For Sim-

ulation 3, we contaminate the set of slowly time-varying autoregressives of parameter

+0.5 with a series of the same model but with parameter value +0.2.

Contamination B. This type of contamination corresponds to a parameter value of

φ = −0.9 in simulations 1 and 2 and τ = −0.9 in simulation 3 instead of the correct

value. Therefore, we are always using the correct model except in one case, where we

modify the parameter value.

Contamination C. Equal to contamination B, but using a value +0.9 instead of -0.9.

Figures 3(a) and 3(b) present the three contaminations for the first two cases with specific

parameter values. Figure 3(c) shows the contamination B for the third case.

The error rates estimates for the first simulation are presented in table 1; for the second

simulation, in tables 2, 3, 4 and 5; and for the third simulation in tables 6, 7, 8 and 9. Each cell

includes the mean and the standard error (in parenthesis) of the 1000 runs.

Tables 10, 11 and 12 provide the estimates of the computation times. In these tables, each cell

includes the mean of the 1000 runs, in seconds. This time is measured for each method from the

12



Figure 3: Examples of contamination for the three simulation experiments.
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(a) Integrated spectrum for exercise 1: parameter +0.3 and its contaminations
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input instant to the moment when the method outputs the error rate. It means that training and

test series generation time is not included in the computation; but for our method the computation

does include the construction of functional data from series and the evaluation of depth inside

groups.

For all tables we use the following notation: DbC (from depth-based classification) for algorithm

1, DbC-α for algorithm 2 (using α = 0.2 for calculating the α-trimmed mean and J = 2 for

calculating the modified band depth) and SLEXbC for the method of Huang et al (2004). When

a number follows DbC or DbC-α, it indicates the number k of blocks into which the series are

split. Given a length T , SLEXbC considers several levels or number of partitions (1, 2, 22, ..., 2J)

and usually selects and combines blocks from different levels (that is, blocks of different length) to

calculate the SLEX spectrum. For example, for T = 1024, partitions into 1,2,4 and 8 blocks are

considered by SLEXbC, and the same values have been considered for our methods. The digits in

bold correspond to the minima (when they are different to zero).

Comments on Error Rates

Table 1 shows the estimates of the misclassification rates for the first simulation. When

contamination is not present, DbC and DbC-α provide similar error rates, and about half of

13



Figure 4: Boxplot of the misclassification rates in simulation 1, parameter values +0.1 versus 0.
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the ones obtained by SLEXbC. As we could expect, for DbC and SLEXbC error rates increase

slightly with contamination A (weak) and notably with contaminations B and C (strong), while

changes are negligible for DbC-α because the trim keeps the contamination out. DbC error is

about half of SLEXbC error for contamination A, but their errors are similar with contaminations

B and C. Notice that, in this case, when the autoregressive parameter φ is far away from 0

(which corresponds to the second class, Yt) then the first class, Xt, is separated from the second

class. This is why, the three classification methods do not have missclassification for values of

φ ∈ {−0.5,−0.3, 0.3, 0.5}. There are some symmetries in table 1 for DbC and SLEXbC: for

example, contamination with φ = −0.9 has similar effect on models with φ negative/positive than

contamination with φ = +0.9 has on models with parameter positive/negative, respectively. To

complement the information provided by the tables (mean and standard error), we include some

boxplots of the misclassification rates estimates. For simulation 1, we include only the plot of one

of the two most difficult comparisons, that is, the comparisons of models φ = +0.1 with Gaussian

white noise (see figure 4). The plot shows that SLEXbC tends to have higher median, higher

errors above this median, and less errors near zero. On the other side, DbC-α is the only method

maintaining the same pattern (with and without contamination) and having a considerable amount

of errors close to zero.

Tables 2, 3, 4 and 5 provide the results of the second simulation exercise. As we could expect,

errors decrease when any parameter, N or T , increases. Our methods reach the minimum errors

when series are divided into two blocks. While our errors are larger than the errors of SLEXbC

when we consider the whole series (without splitting them into blocks), errors fall with the first

14



Table 1: Misclassification rates estimates for simulation 1 with and without contamination.

φ = -0.5 φ = -0.3 φ = -0.1 φ = +0.1 φ = +0.3 φ = +0.5

Without contamination

DbC 0.000 (0.0000) 0.000 (0.0000) 0.063 (0.0017) 0.060 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

DbC-α 0.000 (0.0000) 0.000 (0.0000) 0.065 (0.0018) 0.062 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

SLEXbC 0.000 (0.0000) 0.000 (0.0000) 0.131 (0.0024) 0.127 (0.0024) 0.000 (0.0000) 0.000 (0.0000)

Contamination A

DbC 0.000 (0.0000) 0.000 (0.0001) 0.077 (0.0019) 0.074 (0.0019) 0.000 (0.0001) 0.000 (0.0000)

DbC-α 0.000 (0.0000) 0.000 (0.0000) 0.064 (0.0017) 0.062 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

SLEXbC 0.000 (0.0000) 0.000 (0.0001) 0.175 (0.0028) 0.172 (0.0029) 0.000 (0.0001) 0.000 (0.0000)

Contamination B

DbC 0.000 (0.0000) 0.000 (0.0001) 0.300 (0.0028) 0.513 (0.0012) 0.001 (0.0002) 0.000 (0.0000)

DbC-α 0.000 (0.0000) 0.000 (0.0000) 0.065 (0.0018) 0.062 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

SLEXbC 0.000 (0.0000) 0.001 (0.0002) 0.377 (0.0025) 0.491 (0.0011) 0.002 (0.0003) 0.000 (0.0000)

Contamination C

DbC 0.000 (0.0000) 0.001 (0.0002) 0.512 (0.0013) 0.300 (0.0027) 0.000 (0.0001) 0.000 (0.0000)

DbC-α 0.000 (0.0000) 0.000 (0.0000) 0.064 (0.0017) 0.062 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

SLEXbC 0.000 (0.0000) 0.002 (0.0004) 0.490 (0.0011) 0.377 (0.0025) 0.001 (0.0002) 0.000 (0.0000)
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Table 2: Misclassification rates estimates for simulation 2 without contamination.

NxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.141 (0.0024) 0.131 (0.0024) 0.062 (0.0017) 0.060 (0.0017) 0.014 (0.0008) 0.014 (0.0008)

2 0.066 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008) 0.001 (0.0003) 0.001 (0.0003)

4 0.078 (0.0019) 0.069 (0.0018) 0.015 (0.0009) 0.014 (0.0009) 0.001 (0.0003) 0.001 (0.0003)

8 0.090 (0.0020) 0.080 (0.0019) 0.020 (0.0010) 0.018 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

DbC-α 1 0.143 (0.0024) 0.132 (0.0024) 0.063 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008)

2 0.069 (0.0018) 0.064 (0.0017) 0.016 (0.0009) 0.015 (0.0009) 0.001 (0.0003) 0.001 (0.0003)

4 0.083 (0.0020) 0.073 (0.0018) 0.017 (0.0010) 0.016 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.105 (0.0023) 0.088 (0.0020) 0.024 (0.0011) 0.019 (0.0010) 0.002 (0.0004) 0.002 (0.0003)

SLEXbC 0.114 (0.0023) 0.086 (0.0020) 0.038 (0.0014) 0.025 (0.0011) 0.007 (0.0006) 0.003 (0.0004)

division. As we mentioned before, the length of the blocks decreases with k, and this negatively

affects the performance of the periodogram as an estimator. We can observe this effect of splitting

in all the tables of simulation 2, and it is also evident that the increase in errors with the increase of

k is higher for short series than for longer ones. Nevertheless, we observe that even with k = 8 the

misclassification rates are smaller than the ones obtained by the SLEXbC procedure or the ones

obtained by our procedures with k = 1. Recall that, like our procedure, the SLEXbC method

splits implicitly the series into blocks. Regarding the contaminations, for DbC and SLEXbC,

errors increase slightly with contamination A and greatly for contaminations B and C, while DbC-

α maintains its errors and outperforms all the other methods, mainly with strong contaminations

and when two blocks are considered. As it could be expected, contaminating a series has major

effects when samples sizes are Nx = Ny = 8 than when Nx = Ny = 16. The DbC and SLEXbC

methods are affected more for contamination C than for contamination B, since φ = +0.9 is

farther from φ = −0.1 (population PX) than φ = −0.9 is.

The boxplot error rates from simulation 2 can be seen in figure 5. DbC and DbC-α perform

better than SLEXbC. When k > 1 the median error rate decreases and it presents a stable

behavior. These plots, and the tables, show that DbC-α with k = 2 tends to provide the best

results, except when there is no contamination and then DbC with k = 2 has the best performance.

In general, DbC-α with k = 2 is the method that presents the largest proportion of errors near

zero.

For simulation 3, conclusions similar to the previous ones can be derived from tables 6, 7, 8 and

9. They also show that, in our proposal, penalization for splitting too much is not serious when

series are long enough. Generally, the best results with both methods are obtained with k = 4 but

even with k = 8 the misclassification rates are smaller than the ones obtained by the SLEXbC
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Table 3: Misclassification rates estimates for simulation 2 with contamination A.

NxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.143 (0.0025) 0.132 (0.0024) 0.063 (0.0017) 0.062 (0.0017) 0.018 (0.0010) 0.015 (0.0008)

2 0.070 (0.0018) 0.062 (0.0017) 0.018 (0.0010) 0.014 (0.0008) 0.002 (0.0003) 0.001 (0.0003)

4 0.083 (0.0020) 0.071 (0.0019) 0.019 (0.0010) 0.015 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.102 (0.0022) 0.083 (0.0020) 0.026 (0.0012) 0.019 (0.0010) 0.003 (0.0004) 0.002 (0.0003)

DbC-α 1 0.145 (0.0025) 0.132 (0.0023) 0.063 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008)

2 0.072 (0.0018) 0.064 (0.0017) 0.015 (0.0009) 0.015 (0.0009) 0.001 (0.0002) 0.001 (0.0003)

4 0.086 (0.0021) 0.073 (0.0018) 0.018 (0.0010) 0.016 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.114 (0.0024) 0.089 (0.0021) 0.025 (0.0011) 0.019 (0.0010) 0.003 (0.0004) 0.002 (0.0003)

SLEXbC 0.128 (0.0025) 0.092 (0.0021) 0.050 (0.0016) 0.027 (0.0012) 0.012 (0.0008) 0.004 (0.0004)

Table 4: Misclassification rates estimates for simulation 2 with contamination B.

NxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.258 (0.0029) 0.168 (0.0026) 0.252 (0.0029) 0.117 (0.0022) 0.250 (0.0029) 0.065 (0.0018)

2 0.135 (0.0024) 0.082 (0.0020) 0.088 (0.0021) 0.030 (0.0012) 0.049 (0.0016) 0.007 (0.0006)

4 0.137 (0.0025) 0.085 (0.0020) 0.089 (0.0021) 0.031 (0.0012) 0.049 (0.0016) 0.007 (0.0006)

8 0.143 (0.0025) 0.092 (0.0021) 0.093 (0.0022) 0.034 (0.0014) 0.050 (0.0016) 0.007 (0.0006)

DbC-α 1 0.145 (0.0024) 0.134 (0.0024) 0.064 (0.0017) 0.061 (0.0017) 0.015 (0.0008) 0.014 (0.0008)

2 0.070 (0.0018) 0.065 (0.0017) 0.017 (0.0010) 0.015 (0.0009) 0.003 (0.0006) 0.001 (0.0003)

4 0.081 (0.0020) 0.071 (0.0019) 0.017 (0.0010) 0.017 (0.0009) 0.002 (0.0003) 0.002 (0.0003)

8 0.104 (0.0023) 0.087 (0.0020) 0.023 (0.0011) 0.019 (0.0010) 0.002 (0.0004) 0.002 (0.0003)

SLEXbC 0.239 (0.0031) 0.134 (0.0024) 0.228 (0.0030) 0.081 (0.0020) 0.220 (0.0030) 0.037 (0.0013)

17



Figure 5: Boxplots of the misclassification error rates for simulation 2, training sets with 8 series of

length 1024.
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Table 5: Misclassification rates estimates for simulation 2 with contamination C.

NxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.457 (0.0056) 0.162 (0.0027) 0.437 (0.0055) 0.090 (0.0020) 0.445 (0.0047) 0.038 (0.0013)

2 0.147 (0.0036) 0.078 (0.0019) 0.055 (0.0020) 0.028 (0.0012) 0.015 (0.0010) 0.005 (0.0005)

4 0.187 (0.0037) 0.092 (0.0021) 0.068 (0.0022) 0.030 (0.0012) 0.017 (0.0010) 0.006 (0.0005)

8 0.225 (0.0039) 0.107 (0.0022) 0.101 (0.0027) 0.034 (0.0014) 0.024 (0.0011) 0.006 (0.0006)

DbC-α 1 0.145 (0.0025) 0.133 (0.0024) 0.063 (0.0017) 0.062 (0.0017) 0.015 (0.0009) 0.014 (0.0008)

2 0.073 (0.0020) 0.065 (0.0017) 0.018 (0.0013) 0.015 (0.0009) 0.002 (0.0005) 0.001 (0.0003)

4 0.083 (0.0020) 0.073 (0.0018) 0.017 (0.0010) 0.016 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.108 (0.0022) 0.088 (0.0021) 0.024 (0.0011) 0.019 (0.0010) 0.003 (0.0004) 0.002 (0.0003)

SLEXbC 0.376 (0.0036) 0.177 (0.0029) 0.354 (0.0032) 0.098 (0.0023) 0.369 (0.0030) 0.040 (0.0015)

procedure or the ones obtained by our procedures with k = 1. Notice that in this case it does not

exist a theoretical optimum k. In the contaminated models, the best error rates are obtained with

DbC-α for k = 4. As we can see, contamination A has a small effect. On the other hand, results

are very different for contaminations B and C. Notice that, since τ has positive values in both

populations, contaminating with a series of parameter τ = −0.9 (contamination B) is a stronger

contamination than using a series with τ = +0.9 (contamination C).

Finally, in the three experiments only a subtle difference can be seen between DbC and DbC-

α. When there is no contamination, it is natural that the former provides slightly better error

rates, because the latter, due to its trimming, is using only 100(1 − α)% of the suitable training

data available. Similar results were obtained when the L2 distance is used instead of L1. The

corresponding tables are available on request to the authors.

Comments on Computation Times

Estimates of the computation times are given in tables 10, 11 and 12. Since chronometer is

called after generating series, it can be expected that the computation times do not depend on the

parameters of the stochastic processes. This is what we observe for our algorithms, but not for

the SLEXbC method. Perhaps, because this method needs to select a basis of the SLEX library

for each series, while our method works only with the graphs of the functions (and, at the same

time, computing the integrated periodogram does not depend on the parameters).

Some other conclusions that we can point out from the three simulations are the following. It

is clear that the computation time for our procedure grows with the number of blocks k. One can

also see that the computation of depth is moderately time-consuming with the sample size and
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Table 6: Misclassification rates estimates for simulation 3 without contamination.

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.218 (0.0031) 0.063 (0.0017) 0.019 (0.0010)

2 0.119 (0.0023) 0.006 (0.0006) 0.000 (0.0000)

4 0.101 (0.0022) 0.002 (0.0003) 0.000 (0.0000)

8 0.123 (0.0024) 0.003 (0.0004) 0.000 (0.0000)

DbC-α 1 0.226 (0.0032) 0.065 (0.0018) 0.021 (0.0010)

2 0.128 (0.0023) 0.006 (0.0006) 0.000 (0.0000)

4 0.112 (0.0023) 0.002 (0.0003) 0.000 (0.0000)

8 0.139 (0.0026) 0.004 (0.0004) 0.000 (0.0000)

SLEXbC 0.181 (0.0031) 0.011 (0.0009) 0.000 (0.0000)

Table 7: Misclassification rates estimates for simulation 3 with contamination A.

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.232 (0.0032) 0.062 (0.0017) 0.019 (0.0009)

2 0.143 (0.0026) 0.006 (0.0006) 0.000 (0.0000)

4 0.144 (0.0026) 0.004 (0.0004) 0.000 (0.0000)

8 0.177 (0.0028) 0.005 (0.0005) 0.000 (0.0000)

DbC-α 1 0.241 (0.0035) 0.065 (0.0018) 0.020 (0.0010)

2 0.131 (0.0025) 0.007 (0.0006) 0.000 (0.0000)

4 0.121 (0.0026) 0.003 (0.0004) 0.000 (0.0000)

8 0.150 (0.0029) 0.005 (0.0005) 0.000 (0.0000)

SLEXbC 0.234 (0.0033) 0.016 (0.0011) 0.000 (0.0000)
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Table 8: Misclassification rates estimates for simulation 3 with contamination B.

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.254 (0.0029) 0.106 (0.0022) 0.043 (0.0015)

2 0.500 (0.0015) 0.067 (0.0021) 0.001 (0.0002)

4 0.500 (0.0012) 0.062 (0.0020) 0.001 (0.0002)

8 0.499 (0.0013) 0.082 (0.0024) 0.000 (0.0001)

DbC-α 1 0.231 (0.0031) 0.074 (0.0020) 0.026 (0.0012)

2 0.128 (0.0024) 0.007 (0.0006) 0.000 (0.0000)

4 0.113 (0.0023) 0.002 (0.0004) 0.000 (0.0000)

8 0.141 (0.0026) 0.003 (0.0004) 0.000 (0.0000)

SLEXbC 0.492 (0.0019) 0.174 (0.0051) 0.015 (0.0009)

Table 9: Misclassification rates estimates for simulation 3 with contamination C.

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.257 (0.0029) 0.107 (0.0022) 0.044 (0.0015)

2 0.153 (0.0025) 0.017 (0.0009) 0.000 (0.0001)

4 0.128 (0.0024) 0.007 (0.0006) 0.000 (0.0000)

8 0.132 (0.0024) 0.006 (0.0006) 0.000 (0.0001)

DbC-α 1 0.234 (0.0031) 0.074 (0.0020) 0.025 (0.0012)

2 0.125 (0.0024) 0.007 (0.0006) 0.000 (0.0001)

4 0.114 (0.0024) 0.002 (0.0004) 0.000 (0.0000)

8 0.138 (0.0026) 0.004 (0.0004) 0.000 (0.0000)

SLEXbC 0.173 (0.0027) 0.015 (0.0009) 0.000 (0.0001)
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Table 10: Mean computation times for simulation 1.

φ = -0.5 φ = -0.3 φ = -0.1 φ = +0.1 φ = +0.3 φ = +0.5

DbC 0.027 0.027 0.027 0.027 0.027 0.027

DbC-α 0.044 0.045 0.045 0.044 0.044 0.044

SLEXbC 0.632 0.678 0.724 0.713 0.670 0.619

series length involved in simulations 1 and 3. This computational complexity comes mainly from

the number of comparisons needed when evaluating the depths and not from the length of the

series involved in each comparison. Nevertheless, it is possible to do these comparisons only once

and speed the computation of depth by implementing conveniently the method in López-Pintado

and Romo (2006); this allows using the depths with larger sample sizes. Finally, an interesting

effect showed in table 11 is that computation time depends on sample sizes M and N for our

approach, but it seems slightly dependent on the series length T , while the SLEXbC method gets

slower when any M , N or T increases.

Remark 8 Notice that computational times depend on the implementation —not just on the

method itself—, so we pay closer attention to the qualitative interpretation of the results, as they

are less dependent on the programmed code. Additionally, we should mention that results in tables

10, 11 and 12 do not include a k selection procedure for our methods or the smoothing window

span for smoothing the SLEX periodogram. Similar qualitative patterns for the computational times

have been obtained in simulation exercises —not included here— where the same computer, time

series, number of possible values for the parameters and cross-validation loops were considered.

5 Real data examples

In this section, we illustrate the performance of our proposal in two benchmark data sets: (i)

Geological data consisting in 16 labeled time series corresponding to eight earthquakes and eight

explosion and an unlabeled time series but being an earthquake or an explosion; and (ii) Speech

recognition data consisting in three sets of 100 labeled time series corresponding to digitized speech

frames.

5.1 Geological Data

In this section, we have evaluated our proposal in a benchmark data set containing eight explo-

sions, eight earthquakes and one extra series —known as NZ event—not classified (but being an
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Table 11: Mean computation times for simulation 2.

NxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.021 0.028 0.027 0.038 0.044 0.067

2 0.036 0.049 0.043 0.060 0.062 0.087

4 0.066 0.092 0.067 0.094 0.081 0.115

8 0.125 0.180 0.126 0.181 0.129 0.186

DbC-α 1 0.031 0.108 0.044 0.200 0.084 0.463

2 0.046 0.137 0.064 0.237 0.103 0.496

4 0.086 0.280 0.087 0.276 0.123 0.505

8 0.170 0.585 0.171 0.595 0.173 0.602

SLEXbC 0.355 0.517 0.736 1.095 1.681 2.506

Table 12: Mean computation times for simulation 3.

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.031 0.030 0.030

2 0.047 0.047 0.048

4 0.074 0.074 0.074

8 0.140 0.140 0.140

DbC-α 1 0.066 0.062 0.063

2 0.083 0.093 0.094

4 0.120 0.121 0.120

8 0.235 0.234 0.235

SLEXbC 0.733 0.685 0.675
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Figure 6: Earthquakes data
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earthquake or an explosion). This data set was constructed by Blandford (1993). Each series con-

tents 2048 points, and its plot clearly shows two different parts — the first half is the part P and

the second half is S. This division is an assumption considered by most authors, and it is based on

geological reasons. It is also frequent to consider that both parts are stationary. Kakizawa et al.

(1998) give a list of these measurements. Shumway and Stoffer (2000) included a detailed study

of this data set, and provide access to it at: http://www.stat.pitt.edu/stoffer/tsa.html.

Figure 6 presents examples of earthquake and explosion, plus the NZ event and their respective

integrated periodograms.

Following the simple criterion given in section 2 to choose between normalized and nonnor-

malized versions of the cumulative periodogram, and after visual observation of these data, for

each series we have considered the curve formed by merging the nonnormalized integrated peri-

odograms of parts P and S independently computed; that is, we take k = 2 as it is suggested by

data (and used by most authors). Let us consider the eight earthquakes as group 1 and the eight

explosions as group 2. We have used leave-one-out cross-validation to classify the elements of these

two groups: that is, removing a series at a time, using the rest of the data set to train the method

and finally classifying the removed series. By doing this, both of our algorithms misclassify the

first series of the group 2 (explosions). Regarding the NZ event, if we use the previous groups as

training sets, both algorithms agree on assigning it to the explosions group, which agrees with the

results obtained by, e. g., Kakizawa et al (1998) or Huang et al (2004).

Now we propose an additional problem. We consider an artificial data set constructed by the

eight earthquakes plus the NZ event as group 1, and the eight explosions as group 2. Note that
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Figure 7: Words YES/NO data
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our method and most of the published papers classify NZ as an explosion. Then we could consider

this artificial setting as a case where some atypical observation is presented in group 1. In this

situation, the results using our algorithm 1 are that it misclassifies the first and the third elements

of group 2 (explosions), not only the first. But again algorithm 2 misclassifies only the first series

of group 2. This seems to show the robustness of our second algorithm. Obviously, since we

are using leave-one-out cross-validation, both algorithms classify the NZ event in the explosions

group, as we mentioned in the previous paragraph.

5.2 Speech recognition data

In this section, we have evaluated our proposal in a benchmark data set containing three sub-

sets of 100 recordings of two short words or phonemes. These three data sets were used by

Biau et al. (2003) to illustrate the performance of several classification procedures on functional

data, i.e., their procedures consider the time series as functional data. The data are available at

http://www.math.univ-montp2.fr/ biau/bbwdata.tgz. The first set corresponds to the words

YES and NO with 52 and 48 speech frames, respectively; the second set corresponds to the words

BOAT and GOAT with 55 and 45 speech frames, respectively; and the third set to the phonemes

SH (as in SHE) and AO (as in WATER) with 42 and 58 speech frames, respectively. Each speech

frame consists on a time series of length 8192 observations. Figures 7, 8 and 9 present examples of

the different words or phonemes and their respective integrated periodograms. As its clear from

those figures, the time series are nonstationary so the number of blocks in our procedures should

be k > 1. For illustrative purpose, we use k = 2 in those figures but the “best” k could be selected

by a cross-validation procedure.

Biau et al. (2003) report their misclassification rates based on a cross-validation procedure
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Figure 8: Words BOAT/GOAT data
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Figure 9: Phonemes SH/AO data
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Table 13: Misclassification rates estimates for Speech recognition data.

YES/NO BOAT/GOAT SH/AO

DbC 1 0.404 (0.0018) 0.387 (0.0030) 0.000 (0.0000)

2 0.407 (0.0021) 0.345 (0.0026) 0.000 (0.0000)

4 0.102 (0.0021) 0.285 (0.0023) 0.003 (0.0002)

8 0.091 (0.0014) 0.265 (0.0017) 0.003 (0.0002)

16 0.100 (0.0015) 0.253 (0.0028) 0.003 (0.0002)

32 0.117 (0.0016) 0.250 (0.0028) 0.008 (0.0005)

DbC-α 1 0.281 (0.0038) 0.360 (0.0041) 0.000 (0.0000)

2 0.170 (0.0032) 0.293 (0.0041) 0.000 (0.0001)

4 0.066 (0.0012) 0.217 (0.0033) 0.005 (0.0003)

8 0.049 (0.0009) 0.223 (0.0026) 0.007 (0.0003)

16 0.058 (0.0010) 0.143 (0.0032) 0.012 (0.0005)

32 0.085 (0.0012) 0.164 (0.0035) 0.023 (0.0006)

with fifty time series as training sample and the remaining fifty time series as testing sample. The

results with their nonparametric functional classification procedure and two alternative procedures

(nearest neighbor procedure and quadratic discriminant analysis) are 0.10–0.36–0.07, 0.21–0.42–

0.35 and 0.16–0.42–0.19 for YES/NO, BOAT/GOAT and SH/AO, respectively. Table 13 shows

our classification results using the same cross-validation scheme for different values of k. The

misclassification rates estimates reported in table 13 are based on 1000 replications.

Our results are similar or better than the obtained by Biau et al. (2003). The robust algorithm,

DbC-α, produces the best results for the YES/NO and BOAT/GOAT sets having misclassification

rates around 0.05 (with k=4,8 or 16) and 0.150 (with k=16 or 32), respectively. Both methods,

DbC and DbC-α, produce almost perfect classification in the SH/AO set which is a big improve-

ment with respect to the three methods used in Biau et al. (2003). For this third set, the impact

of k is not relevant.

Additionally, in figure 10 we show the overall error rate (based on 100 replicas) for the YES/NO

dataset using from one to thirty two blocks. The computational time in obtaining figure 10 was

around 843.8 seconds, what ratifies the practicability of the number of blocks selection’s procedure.

Notice that the selection of blocks is performed only once. The best results, using , DbC and DbC-

α, are with k = 5 and k = 16, respectively. Moreover, figure 10 illustrates that, in this dataset,

once we select a k > 4, the misclassification rates are fairly stable.

27



Figure 10: Overall error rate estimated by cross-validation in YES/NO dataset.

0 3 6 9 12 15 18 21 24 27 30 33
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

DbC
DbC-α

6 Conclusions

We introduce a new time series classification method based on the series integrated periodogram.

Notice that the calculation of the (integrated) periodogram do not involve a bandwidth selection

as other spectral (distribution) density estimators. This is a clear advantage with respect to

methods that require smooth and consistent spectral density estimators. When the series are

nonstationary, they are split into blocks and the integrated periodograms of the blocks are merged

to construct a curve; this idea relays on the assumption of local stationarity of the series. Since the

integrated periodogram is a function, statistical methods recently developed for functional data

can be applied. New series are assigned to the class minimizing the distance between its group

mean curve and the new data function. Since the group mean can be affected by the presence of

outliers, we propose robustifying the classification by replacing the mean curve by the depth based

α-trimmed mean, where for each group only the deepest elements are averaged. We have evaluated

our proposal in different scenarios. We have run three simulations containing several models and

parameter values, one with stationary series and the other with two types of nonstationarity.

After running the simulations without contamination, we have repeated all comparisons three

more times using exactly the same series but replacing one by a contaminated series. We consider

one kind of weak contamination and two strong contaminations. Our second algorithm exhibits

robustness against outlier, meanwhile the performance of the SLEXbC procedure deteriorates

considerably. We also illustrate the performance of our procedure in two benchmark datasets.

Our proposal provides small error rates, robustness and a good computational behavior, what

makes the method suitable for classifying long time series. Finally, this paper suggests that the

integrated periodogram contains useful information to classify time series and the concept of depth

for functional data can be used to make classification robust, which is a clear advantage over other

competitive procedures that are strongly affected by the presence of outliers.
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Appendix

In this section we follows the papers of Dahlhaus (1996, 1997) to present a locally stationary time

series model that allows us to define a time dependent integrated spectrum. In this nonstationary

framework it is not possible to separate the time and the frequency domains. The strategy of

Dahlhaus started with a spectral representation:

Definition 1 (Dahlhaus, 1996 and 1997) A sequence of stochastic processes (Xt,T 1 ≤ t ≤ T, T ≥ 1)

is called locally stationary with transfer function A0 and trend µ if such a representation exists

Xt,T = µ

(
t

T

)
+

∫ +π

−π
eiλtA0

t,T (λ)dξ(λ), (15)

where

(i) ξ(λ) is a stochastic process on [−π,+π] with ξ(λ) = ξ(−λ) and

cum{dξ(λ1), · · · , dξ(λk)} = η(
k∑
j=1

λj)gk(λ1, · · · , λk−1)dλ1 · · · dλk,

where g1 = 0, g2(λ) = 1, |gk(λ1, · · · , λk−1)| ≤ constk for all k, cum{· · ·} denotes the cumulant

of k-th order and η(λ) =
∑+∞

j=−∞ δ(λ + 2πj) is the period 2π extension of the Dirac delta

function.

(ii) There is a constant C and a 2π-periodic function A : [0, 1]×R→ C with A(u,−λ) = A(u, λ)

and

supt,λ|A0
t,T (λ)− A(t/T, λ)| ≤ CT−1,

for all T ; A(u, λ) and µ(u) are assumed to be continuous in u.

Definition 2 (Dahlhaus, 1996 and 1997) The (time-varying) spectral density of the process (se-

quence of processes) is defined as:

f(u, λ) = A(u, λ)A(u, λ) = |A(u, λ)|2. (16)

For these processes, Dahlhaus (1996) also defines the local covariance of lag k at time u, and

gives kernel estimates of it, as well as of the spectral density. From the above definition, we

can propose a spectral distribution function that could be estimated by our blockwise integrated

periodogram:

Definition 3 The (time-varying) spectral distribution of the process (sequence of processes) is

defined as:

F (u, λ) =

∫ λ

−π
f(u, l)dl. (17)
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Notice that if the underlying process (sequence of processes) is piecewise stationary, i.e., there

exit some u1, u2, . . . , us such that f(u, λ) is constant as function of u at intervals (ui, ui+1) then the

above definition produces a piecewise constant spectral distribution as function of u. Of course,

assuming the asymptotic framework proposed by Dahlhaus, the number of observations in each

interval increases as T grows. The integrated periodogram, FT , calculated using the observations

inside a particular interval will provide a consistent estimator of this piecewise spectral distribu-

tion. Moreover, if we consider an increasing number of blocks then most of these K intervals will

be inside of one the intervals (ui, ui+1) for i = 1, 2, . . . , s − 1 and the length of the intervals that

does not satisfy this inclusion property will be asymptotically negligible.
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