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Abstract

In this paper, we focus on the estimation of a high-dimensional inverse covariance (precision)

matrix. We propose a simple improvement of the graphical lasso (glasso) framework that is able to

attain better statistical performance without increasing significantly the computational cost. The

proposed improvement is based on computing a root of the sample covariance matrix to reduce the

spread of the associated eigenvalues. Through extensive numerical results, using both simulated

and real datasets, we show that the proposed modification improves the glasso procedure. Our

results reveal that the square-root improvement can be a reasonable choice in practice.

Keywords: Gaussian Graphical Model, High-dimensionality, Penalized estimation, Gene

expression, Portfolio selection.

1. Introduction

In recent years, there has been a growing interest in estimating the inverse covariance matrix

(also known as precision or concentration matrix) in high dimensional settings. It is an important

problem in many statistical methodologies and research fields. For instance, in finance an accurate

precision matrix is required when computing optimal portfolios for a large number of assets (Stevens

1998; Frahm and Memmel 2010; Goto and Xu 2013). In machine or statistical learning methods,

such as classification or clustering, a proper estimation of the precision matrix is fundamental
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when dealing with a vast amount of predictor variables (Mardia et al. 1979; McLachlan 2004).

The applications involving Gaussian Graphical Models (GGM) are particularly important, where

the precision matrix is assumed to be sparse and its non-zero entries are related with the partial

correlation coefficients (Dempster 1972; Lauritzen 1996). One notable application where the

precision matrix is intrinsically sparse is the estimation of genetic regulatory networks through high

dimensional microarray gene expression data (Stifanelli et al. 2013; Yin and Li 2013). Another

application involving sparse precision matrices is the estimation of functional brain connectivity

networks through neuroimaging techniques (Huang et al. 2010).

In this paper, we focus on the estimation of a high-dimensional precision matrix. There are

several approaches that try to estimate efficiently such matrices. We assume that a n× p centered

sample data matrix, X, is observed, where each row Xi = (Xi1, ..., Xip) is a realization of a p-variate

random vector that is independent and identically distributed for i = 1, ..., n, and has a covariance

matrix Σ with the corresponding precision matrix Ω = Σ−1.

We first classify the precision matrix estimation approaches by considering those that estimate

it by inverting an estimator of the covariance matrix, and those that estimate the precision matrix

directly. We refer the former approaches as two-step estimation procedures where a covariance

matrix must be estimated in the first step. The classical estimator of the covariance matrix is the

sample covariance matrix S. However, when the ratio between the number of variables p and the

number of observations n is small but close to one, then the bias of the corresponding inverse of

the classical estimator may be large, E(S−1) − Ω = p+2
n−p−2Ω, and the associated precision matrix

may be highly unstable. For instance, when p = n/2 − 2, then E(S−1)− Ω = Ω, i.e., the bias has

the same magnitude as Ω. Moreover, when p/n > 1, the classical estimator is not invertible. To

overcome these difficulties, some techniques have been proposed to deal with the estimation of the

covariance matrix when the dimension p is large compared with the number of observations n. In

essence, all these approaches try to mitigate the effect of the smallest eigenvalues of the covariance

matrix (see Chamberlain and Rothschild 1983; Bai 2003). One of the well accepted approaches is

the shrinkage estimator proposed by Ledoit and Wolf (2004) and extended by Schafer and Strimmer

(2005). This estimator shrinks the sample covariance matrix toward a target matrix using a linear

combination. Even though this estimator presents good practical and theoretical properties, the

associated inverse estimator may not inherit such properties. In particular, when the dimension of

the problem is high, this inverse estimator may not be optimal and may amplify the estimation error
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of the covariance matrix estimator (Ledoit and Wolf 2012). Moreover, these two-step approaches

do not provide, in general, sparse precision matrix estimations. For these reasons, our proposed

methodology is based on the second class of approaches that attempt to estimate the precision

matrix directly.

Following the ideas of Ledoit and Wolf (2004), a shrinkage approach can also be applied directly

to the precision matrix estimation. In this way, Frahm and Memmel (2010) proposed a precision

matrix estimation by considering a convex linear combination between the inverse of the sample

covariance matrix and a target matrix. A similar study by Kourtis et al. (2012) considers a conical

combination between the inverse of the sample covariance matrix and a target matrix. However,

these two studies focus on reducing the out-of-sample variance of the portfolio returns, rather

than obtaining a better precision matrix estimator. Furthermore, these two methods rely on the

assumption that the ratio between the number of variables and the number of observations is small

enough (p << n).

Moreover, as explained previously, recent applications require the estimation of GGMs where

conditional dependencies between the variables are estimated through the off-diagonal and nonzero

entries of the precision matrix, which is assumed intrinsically sparse. To attain a sparsity pattern

in the estimated precision matrix and deal with the case p/n > 1, the `1 or Lasso (Least Absolute

Shrinkage and Selection Operator) regularization framework can be applied. This approach was

proposed by Tibshirani (1996) in the regression framework. Banerjee et al. (2006) proposed the

precision matrix estimation by maximizing the `1-penalized log-likelihood function to attain sparse

solution1.

This approach has been extensively analysed by other authors (e.g., Yuan and Lin 2007;

d’Aspremont et al. 2008; Banerjee et al. 2008; Rothman et al. 2008; Yin and Li 2013). Several

efficient algorithms have been developed to solve the problem efficiently, such as the Graphical

Lasso (Friedman et al. 2008), a Project Sub-gradient Method (Duchi et al. 2008), an Alternating

Linear Minimization (Scheinberg et al. 2010), and an Interior Point method (Li and Toh 2010),

among others.

Regarding non-likelihood approaches, Meinshausen and Bühlmann (2006) proposed a neighbor-

hood selection framework based on lasso regressions. Yuan (2010) proposed the use of the Dantzig

1Other penalty functions have been proposed to regularize the log-likelihood, see Fan et al. (2009).
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selector to replace the lasso regression in this framework. Finally, Cai et al. (2011) introduced

the constrained `1 - minimization based on constraining the `1 norm of the precision matrix (also

known as clime estimator).

In this paper, we focus on the `1 penalized log-likelihood maximization approach and propose

a simple modification that is able to attain a better statistical performance without sacrificing too

much the computational cost. One of the most efficient algorithms to compute numerically the `1

penalized log-likelihood estimator is the glasso framework. This framework allows a fast, efficient

and stable solution for high-dimensional problems. The glasso algorithm is based on minimization

of the log-determinant of the precision matrix subject to its inverse being close to the sample

covariance matrix, S. However, it is well-known (Johnstone 2001) that in high-dimensional settings

the eigenvalues of S are more spread and hence, its condition number is large. Through simulations,

Ledoit and Wolf (2004) show that the condition number and the bias of the largest and smallest

sample eigenvalues tend to increase with p/n. To improve the stability of the glasso estimation,

we propose to use a k-root of the sample covariance matrix, with k ≥ 1, to attain less spread

eigenvalues and therefore, obtain a more accurate estimation of Ω1/k and also Ω.

The proposed k-root glasso algorithm is a simple modification of the glasso one. Similar to

the original glasso method, it is based on minimization of the log-determinant of the precision

matrix, but now subject to its k-root inverse being close to the k-root of the sample covariance

matrix. Once the specific k-root and the penalty parameter (associated with the original glasso

framework) are selected, the proposed procedure requires no additional cost than that of the glasso

method. Through extensive numerical results, using both simulated and real datasets, we show

that the proposed technique outperforms the glasso estimator when considering different statistical

losses and GGM performance measures. In particular, we use the entropy loss and the mean

squared error to measure the statistical performance. In addition, we use specificity, sensitivity and

Matthews Correlation Coefficient (MCC) to measure the GGM prediction accuracy. Furthermore,

we propose a calibration procedure for selecting the k-root of the sample covariance matrix and

also the associated tuning (penalty) parameter that regularizes the log-likelihood. Finally, for the

proposed k-root glasso method, we establish the convergence rate in the Frobenius norm.

The rest of the manuscript is organized as follows. Section 2 describes the proposed k-root glasso

(or simply r-glasso) methodology to estimate large precision matrices. Section 3 proposes a different

approach for selecting both the k-root of the sample covariance matrix and the associated penalty
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parameter that regularizes the log-likelihood. Section 4 exhaustively evaluates the statistical loss

and GGM performance of the proposed methodology and compares with that of the glasso one.

Section 5 illustrates the solution properties when applying the proposed methodology to three

empirical applications: the prediction of breast cancer state, the prediction of the SRBC tumour,

and the computation of an optimal financial portfolio. Section 6 provides the conclusions. Finally,

Appendix A develops the analytical convergence rate of the proposed method and Appendix B

contains the tables of the numerical results.

2. Proposed k-root glasso framework

Before proposing the k-root glasso methodology, we introduce the following notations. For any

vector a = (a1, ..., ap)
T ∈ Rp, the `1 or Manhattan norm is denoted by ||a||1 =

p∑
j=1

|aj |, the `2 or

Euclidean norm by ||a||2 =

√
p∑
j=1

a2
j , and the `∞ or Maximum norm by ||a||∞ = max(|a1|, ..., |ap|).

For any symmetric matrix A = [aij ]1≤i,j≤p, the componentwise `1 norm is denoted by ||A||1 =
p∑
i=1

p∑
j=1

|aij |, the componentwise `2 or Frobenius norm by ||A||2 =

√
p∑
i=1

p∑
j=1

a2
ij , the componentwise

`∞ norm by ||A||∞ = max1≤i,j≤p |aij |, and the spectral norm by ||A||spec = sup||x||2≤1 ||Ax||2. For

any positive definite symmetric matrix A, λ(A) will denote the vector of eigenvalues of matrix A,

where λmax(A) = maxλi(A) = ||A||spec and λmin(A) = minλi(A) = ||A||min denote the maximum

and minimum eigenvalues, respectively. Finally, we assume that a centered sample data matrix,

X, is observed with dimension n × p, where each row Xi = (Xi1, ..., Xip) is a realization of a p-

variate normal random vector that is independent and identically distributed for i = 1, ..., n, with

covariance matrix Σ and precision matrix Ω = Σ−1.

The glasso estimator is defined as the solution of the following optimization problem:

Ω̂glasso = arg max
Ω

log det Ω− trace(SΩ)− ν||Ω||1, (1)

where S = (1/n)
n∑
i=1

XiX
T
i is the sample covariance matrix and ν > 0 is a penalty parameter. This

parameter controls the sparsity pattern of the glasso estimation.

Note that problem (1) is convex, and its dual problem (2) is defined as (Banerjee et al. 2008):

Ω̂glasso = arg min
Ω

log det Ω

subject to ||Ω−1 − S||∞ ≤ ν.
(2)
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As discussed in Section 1, the glasso estimation is sensitive to the eigenvalue structure of the

sample covariance matrix, S, especially when p is large. To mitigate this sensitivity, we suggest

to shrink the eigenvalue spread by considering a k-root of S defined as S1/k = BV 1/kB′, where

S = BV B′ is the eigen-decomposition of S and k > 1. In this way, we propose the following k-root

glasso estimator:

Ω̂r-glasso = arg min
Ω

log det Ω

subject to ||Ω−1/k − S1/k||∞ ≤ ξk,
(3)

where ξk > 0 is the associated penalty parameter. The problem (3) can be rewritten as

Γ̂ = arg min
Γ

log det Γ

subject to ||Γ−1 − S1/k||∞ ≤ ξk,
(4)

and we define the k-root glasso estimator as Ω̂r-glasso = Γ̂k, for a given k and ξk. Note that the

primal problem of the optimization problem (4) can be written as the following:

Γ̂ = arg max
Γ

log det Γ− trace(S1/kΓ)− ξk||Γ||1. (5)

Therefore, we can obtain the proposed estimator Ω̂r-glasso = Γ̂k by solving the problem (5) using

the same algorithm as for the problem (2) without any additional cost. Finally, we note that when

k = 1, the k-root glasso estimator reduces to the original one, and, moreover, when ξk = 0, we

obtain the classical naive estimator S−1 for any value of k.

To better illustrate the behaviour of the proposed methodology, we show next a particular

example. Assume that the true precision matrix Ω has the following sparse structure: ωii =

1, ωi,i−1 = ωi−1,i = 0.45 and other elements are 0. For this example we specify the values p = 200

and n = 200.

In Figure 1(a), the entropy loss (see Section 4.2 for a formal definition) of the proposed estimator

is shown as a function of different possible roots (between 1 and 5) and different values of the

penalty parameter (between 0.015 and 0.6 with increment of 0.015). Note that, as the k-root moves

away from 1 (which corresponds to the glasso estimator), it is possible to decrease the loss of the

proposed estimator using convenient paths along ξ. That is, the minimum possible error of the

glasso estimator along the ν path is larger than the minimum possible error of the proposed k-root

glasso estimator along the ξk path, for some values of k. This improvement can be observed more

clearly in Figure 1(b), where the entropy loss is plotted against k using the optimal values for ξk,
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i.e, the penalty parameter that minimizes the entropy loss for a given k. Note that we can reduce

the statistical loss of the glasso estimator by using, for instance, the square-root modification.

Figure 1. (a) Entropy loss of Ω̂r-glasso estimator as a function of ξk and k. (b) Entropy loss of

Ω̂r-glasso estimator as a function of k (given the optimal ξk).

In Section 4, through an exhaustive empirical analysis including several sparsity patterns for

the precision matrix, we show how the proposed k-root glasso estimator can outperform the glasso

one under other statistical performance measures covering those for graphical models.

3. Penalty Parameter Selection

The choice of the penalty parameter has a crucial role in all estimation procedures based on

regularization. The penalty parameter controls the properties of the estimator and especially its

sparsity level. To account for this sparsity level, we suggest the use of the BIC-type criterion.2 The

2In one of the empirical applications in Section 5, we use a cross-validation procedure to calibrate the penalty

parameter, since in this application the sparsity pattern is not important.
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original BIC criterion is proposed by Yuan and Lin (2007), which has the following formulation:

BIC(ξ) = n
(
− log det Ω̂(ξ) + trace(SΩ̂(ξ))

)
+ log n×NZ, (6)

where NZ = card{(i, j) : 1 ≤ i ≤ j ≤ p, [Ω̂(ξk)]ij 6= 0}. The penalty parameter ξ is selected by

minimizing BIC(ξ). Our proposed methodology requires to calibrate two parameters, ξk and k. We

define the following BIC score to select simultaneously these parameters:

BIC(ξk, k) = n
(
− log det Ω̂(ξk, k) + trace(SΩ̂(ξk, k))

)
+ log n×NZ, (7)

where Ω̂(ξk, k) is the estimated precision matrix using the values ξk and k. The parameters (ξk, k)

are selected by minimizing BIC(ξk, k) using a two-dimensional grid search.

4. Simulation Study

In this section, we perform a simulation analysis to compare the performance of the proposed

estimator Ω̂r-glasso with that of the glasso one Ω̂glasso. Specifically, in subsection 4.1 we detail the

considered models for the precision matrix Ω, and in subsection 4.2 we describe the performance

evaluation. Finally, in subsection 4.3 we provide the discussion of the results.

4.1. Considered models

We perform an exhaustive simulation study through seven different structures for the precision

matrix with varying sizes. We divide the models into random (where the sparsity pattern and

the elements are not fixed across replications) and non-random (with fixed sparsity pattern and

deterministic elements). The considered models for the precision matrix Ω are the following:

(i) Random models3

• Model 1. A random p.d. matrix, containing 5% of non-zero entries,

• Model 2. A random p.d. matrix, containing 10% of non-zero entries,

• Model 3. A random p.d. matrix, containing 20% of non-zero entries,

3The random models are generated using the MATLAB command sprandsym.
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• Model 4. A random block-diagonal matrix, with four equally-sized blocks along the diagonal,

each containing 50% of non-zero entries.

(ii) Non-random models

• Model 5. AR(1) structure: ωii = 1, ωi,i−1 = ωi−1,i = 0.45 and other values are 0 (Yuan and

Lin 2007; Friedman et al. 2008),

• Model 6. Decay structure: ωij = 0.6|i−j| (Cai et al. 2011; Fan et al. 2009),

• Model 7. A block-diagonal matrix, with four equally sized blocks along the diagonal, with a

decay model in each block.

For each of the models, we simulate multivariate normal random samples with zero mean, where

n = 200 and p = 100, 200 and 300. This procedure is repeated 100 times.

4.2. Performance evaluation

To compute the performance of a given estimator Ω̂, we use the entropy loss function, also

known as the Kullback-Leibler (KL) loss function, defined as follows:

KLL(Ω̂,Ω) = trace(Ω−1Ω̂)− log det(Ω−1Ω̂)− p. (8)

The KL loss function has been used widely in the prior research on estimation of covariance and

precision matrices (see, for instance, Yuan and Lin 2007; Rothman et al. 2008; Fan et al. 2009;

Yin and Li 2013). Moreover, we also use the mean squared error defined as:

MSE(Ω̂,Ω) = ||Ω̂− Ω||22. (9)

Regarding the sparsity pattern or GGM prediction performance, we compute specificity, sensit-

ivity and Matthews Correlation Coefficient (MCC), defined as:

Specificity =
TN

TN + FP
, (10)

Sensitivity =
TP

TP + FN
, (11)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (12)
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where TP, TN, FP and FN are the numbers of true positives (number of correctly estimated non-

zero entries), true negatives (number of correctly estimated zero entries), false positives (number

of incorrectly estimated non-zero entries) and false negatives (number of incorrectly estimated zero

entries), respectively. Note that FP and FN can be seen as Type I and Type II errors, respectively.

The MCC measure was introduced by Matthews (1975) and it is commonly used to measure the

performance of binary classifiers. The MCC values are in [-1,1], and the closer the MCC to one is,

the better the classification is.

We consider the glasso and the r-glasso procedures where the penalty parameters ν and ξk,

as well as the k-root parameter, are estimated using the BIC criterion (7). We also focus on the

square-root glasso procedure, k = 2, because of its good behaviour in practice. Finally, we include

a comparison with the method clime4 (see Cai et al. 2011) as it is one of the popular estimators

for the precision matrix.5

4.3. Discussion of results

We firstly compare the computational time of the considered methods. The computational time

for each estimator represents the sum of the working time of the parameter selection process and the

working time of the estimation using the selected parameters. For the proposed r-glasso method, the

parameter selection process includes the estimation of both parameters ξk and k, where parameter

k is selected from five values k = 1, 2, ..., 5. Finally, for selection of the penalty parameters, we

consider the same number of steps for all the methods. Table 1 provides the computational times of

the three estimators for model 56. We observe that clime method is very time consuming, especially

when p is large. On the other hand, the difference between the time of the methods glasso and

r-glasso is relatively small, even for large values of p. Hence, we do not sacrifice too much the

computational cost for r-glasso method.

The simulation results are provided in the Appendix B to conserve space (see Tables B.6-B.10).

Each table reports the averages over 100 replications and the standard deviations (SD) of the

corresponding losses and prediction measurements.

4For calculating glasso, r-glasso and clime estimators we use the R packages glasso and clime, available at

http://cran.r-project.org/web/packages
5The penalty parameters for glasso and clime methods are estimated using the BIC criterion (6).
6The computational time differs for different models. However, the comparison results are roughly the same.
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Table 1. Total computational time (in seconds) of the three estimators for model 5.

p 100 200 300

glasso 0.37 2.15 7.26

r-glasso 0.84 5.32 11.61

clime 31.50 458.29 2480.95

As it can be seen from Tables B.6 and B.7, the proposed r-glasso method provides lower KL loss

and MSE than glasso for all the models. Therefore, r-glasso method outperforms glasso in terms of

the statistical losses.

Tables B.8, B.9 and B.10 illustrate the results of the GGM prediction performances. From

Tables B.8 and B.10, we observe that in terms of specificity and MCC7 r-glasso outperforms glasso

for all the models. Finally, r-glasso outperforms glasso in terms of sensitivity (see Table B.9) for

models with deterministic sparsity patterns (models 6, 7). However, glasso performs better in terms

of sensitivity for models with random sparsity patterns (models 1, 2, 3, 4). For model 5 all three

methods provide the same sensitivity level.

When we compare the proposed estimator with clime, r-glasso provides better results for models

2, 3, 4, 5 and similar results for models 1, 6, 7 in terms of KL loss. Moreover, r-glasso outperforms

clime for models 2, 3, 4, 5, 6, 7 and provides similar results for model 1 in terms of MSE. In addition,

the r-glasso estimator outperforms clime method in terms of MCC for models 1, 2, 3, 4, 7. Our

proposed r-glasso method provides higher sensitivity for models 2, 3, 4, 6, 7 and higher specificity

for models 1, 2, 3, 4, 7. On the other hand, clime provides better GGM prediction performances for

model 5. However, we note that the computational cost of clime is considerably larger than that of

r-glasso (see Table 1).

In sum, the proposed r-glasso estimation method provides better performance, including matrix

losses and GGM predictions, than glasso and clime methods for most of the models. Note also that

this conclusion holds if we use the square-root glasso method (i.e., k = 2). This finding allows us

to simplify and ”robustify” our framework without sacrificing too much the performance.

7Specificity and MCC are excluded for model 6, because these measurements are not defined for dense models.
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5. Real Data Analysis

In this section, we conduct an empirical analysis of the proposed r-glasso method through

three real-data applications: the first two aimed at predicting tumours while the last one aimed at

selecting a large financial portfolio.

5.1. Breast Cancer Data

In this application, we focus on the problem of predicting breast cancer patients with pathological

complete response (pCR). The literature has shown that the pCR state after the neoadjuvant

chemotherapy strongly indicates a cancer-free life (Kuerer et al. 1999). Thus, it is important to

select the patients with the pCR state correctly. In our application we use a dataset containing

gene expression levels,8 analysed previously by Hess et al. (2006). This dataset contains 22283

gene expression levels of 133 patients (subjects) with different stages of breast cancer. There are

34 patients with pCR and 99 patients with residual disease (RD).

First, we divide the data into a training set and a testing set with sizes 112 and 21, respectively.

This process is repeated 100 times. We follow the same division scheme applied in Cai et al. (2011).

The testing set randomly selects 5 subjects with pCR and 16 subjects with RD. The training set

contains the remaining subjects. Second, for the training set we apply two sample t-test between

the two groups in order to select the most significant 113 genes with the smallest p-values. Finally,

the precision matrix Ω is estimated with the methods glasso, r-glasso and clime, using the training

set. The penalty parameters for all the methods are estimated using the BIC criterion (6). We

analyse the performance of the r-glasso method when the parameter k is selected from a range 2 to

49. The estimated precision matrix is used in the Linear Discriminant Analysis (LDA) score:

δt(Y ) = Y T Ω̂µ̂t −
1

2
µ̂Tt Ω̂µ̂t, (13)

where t = 1, 2 (i.e., t = 1 for pCR and t = 2 for RD) and µ̂t =
1

nt

∑
i∈classt xi is the within group

average, calculated using the training data. We use the LDA score δt(Y ) to classify the subject Y

from the testing set. The rule for the classification is t̂ = arg max δt(Y ) (t = 1, 2).

To measure the prediction accuracy for the three methods, we use specificity, sensitivity and

Matthews Correlation Coefficient (MCC), as defined in section 4.2. Moreover, we consider TP

8Available at http://bioinformatics.mdanderson.org/pubdata.html.
9For the sake of time, we do not estimate the parameter k. We choose different values for this parameter.
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Table 2. Average pCR classification measurements over 100 replications for p = 113 genes.

Method Specificity Sensitivity MCC

glasso 0.726 0.580 0.281

r-glasso k = 2 0.633 0.840 0.413

r-glasso k = 3 0.618 0.856 0.414

r-glasso k = 4 0.611 0.868 0.419

clime 0.693 0.822 0.453

and TN as the number of correctly predicted pCR and RD, respectively, and FP and FN as the

number of erroneously predicted pCR and RD, respectively. Table 2 reports the average measures

over 100 replications.

We observe that the proposed r-glasso for different values of k has a higher MCC than the glasso

one, which indicates a better classification performance. Moreover, we find that the proposed r-

glasso method outperforms glasso in terms of sensitivity. We also observe that r-glasso outperforms

clime in terms of sensitivity. On the other hand, clime outperforms glasso and r-glasso estiamtors

in terms of specificity and MCC. However, we note that clime is computationally time-consuming.

As a robustness check, we repeat the same application by considering the most significant 200

genes instead of 113. We provide the results in Table 3.

Table 3. Average pCR classification measurements over 100 replications for p = 200 genes.

Method Specificity Sensitivity MCC

glasso 0.750 0.606 0.328

r-glasso k = 2 0.700 0.836 0.470

r-glasso k = 3 0.690 0.844 0.476

r-glasso k = 4 0.689 0.856 0.476

clime 0.712 0.838 0.483

As can be observed, the results are roughly similar to those obtained with 113 genes. We observe

that r-glasso and clime provide very similar results.
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5.2. SRBC Tumour Data

In this application, we consider the problem of predicting the type of the Small Round Blue

Cell (SRBC) tumours. The accurate prediction and diagnosis of the SRBC tumours is a major

challenge, because the associated therapy and the treatment highly depend on the diagnosis (Khan

et al. 2001). We use the same dataset analysed by Khan et al. (2001), which contains the expression

levels of 2308 genes for 64 tissue samples.10 In this dataset, there are four types of SRBC tumours:

12 tissues of Neuroblastoma (NB), 21 tissues of Rhabdomyosarcoma (RMS), 8 tissues of Burkit

Lymphoma, a subset of non-Hodgkin Lymphoma (BL), and 23 tissues of Ewing family tumours

(EWS).

First, we divide the data into a training set and a testing set with sizes 50 and 14, respectively.

This process is repeated 100 times. To ensure that in both sets there are tissues of all four types,

we obtain the training set by randomly selecting 18 tissues from the EWS class, 6 tissues from BL

class, 9 tissues from NB class and 17 tissues from RMS class (around 70% of the subjects from each

class). The remaining 14 tissues form the testing set. Second, we select the most significant 100

genes according to their F-statistics values. We rank the genes in the training set by the level of

the information that they provide using the F-statistics (Rothman et al. 2009), defined as

F =

1
m−1

m∑
i=1

ni(x̄i − x̄)2

1
n−m

m∑
i=1

(ni − 1)s2
i

, (14)

where m = 4 is the number of tumour classes, n = 50 is the number of tissue samples, ni is the

number of tissue samples of class i, x̄ is the overall mean, x̄i and s2
i are the sample mean and

the variance of the class i, respectively. Finally, using the training set, we estimate the precision

matrix Ω by glasso, r-glasso and clime methods. The penalty parameters for all the methods are

estimated using the BIC criterion (6). We analyse the performance of the r-glasso method when

the parameter k is selected from a range 2 to 411. The estimated precision matrix is used in the

LDA score δt(Y ), defined as (13), where t = 1, 2, 3, 4 is the index of tumour class. To measure the

10Available at http://www.bioinf.ucd.ie/people/aedin/R/full/_datasets/.
11For the sake of time, we do not estimate the parameter k. We choose different values for this parameter.
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prediction accuracy, we use the average proportion of correctly classified tissues:

AP =
1

100

100∑
i=1

NCCi
14

, (15)

where NCCi is the number of correctly classified tissues in the i-the replication. We also repeat

the same application by considering the most significant 200 genes instead of 100. We report the

results for both cases in Table 4.

Table 4. Average proportion of correctly classified tissues over 100 replications.

Method p = 100 p = 200

glasso 0.949 0.874

r-glasso k = 2 0.988 0.983

r-glasso k = 3 0.991 0.983

r-glasso k = 4 0.990 0.983

clime 0.988 0.982

We highlight that the average prediction level is higher for the r-glasso estimator than that for

the glasso one. Moreover, we observe that r-glasso and clime provide similar results.

5.3. S&P 500 Portfolio Stock Selection

In our last application, we focus on developing a stock portfolio with minimum risk (i.e., vari-

ance). The precision matrix estimation plays a fundamental role in computing this optimal portfolio

(Stevens 1998). It is well-known that the weights of the (global) minimum variance portfolio are

defined as (see DeMiguel et al. 2009):

wMV P =
Ω1p

1′pΩ1p
, (16)

where 1p denotes a p × 1 vector. As the minimum-variance portfolio depends directly on the

estimation of the precision matrix, an accurate estimation of such a matrix may lead to a decrease

of the out-of-sample risk or variance of the portfolio.

Following the empirical analysis by Goto and Xu (2013), we use monthly returns of the stock
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constituents of S&P 500 index for a total of n = 240 months.12 We consider three different

portfolios: a small portfolio with p = 80 of the largest stocks in the S&P 500 index, a medium

portfolio with p = 200 randomly selected stocks and a large portfolio with p = 300 randomly

selected stocks. To compute the estimated precision matrices, we apply the r-glasso, glasso and

clime methods, using a ”rolling-horizon” procedure as in DeMiguel et al. (2009). In particular, the

rolling window contains 100 months, leaving 140 months to compute the out-of-sample portfolio

variances for each procedure.

To estimate the penalty parameters for the precision estimation methods, we propose the fol-

lowing methodology based on cross-validation.13 For each estimation window of 100 months, we

select the first 80 months to compute the precision matrices and leave the last 20 observations to

minimize the corresponding portfolio variance over the penalty parameter. Because this procedure

is time consuming, we apply this procedure in the first estimation window and then we fix the se-

lected parameter along the rest of the out-of-sample period, as in Goto and Xu (2013). We consider

different versions of the r-glasso procedure where the root k is fixed from 1 to 5 with increment of

0.5.

Table 5 shows the out-of-sample variances for the different portfolios.

The results show that the r-glasso method provides lower out-of-sample portfolio risk than that

of the glasso method, especially for values of k around 2. We observe the same insights when

comparing r-glasso with clime.

6. Conclusions

In this paper, we provide a new approach for estimating high-dimensional precision matrices,

using the `1 penalization framework. The proposed method is a simple modification of the popu-

lar glasso approach based on performing a k-root transformation of the sample covariance matrix

which allows to reduce the spread of the corresponding eigenvalues. Through an extensive analysis,

using both simulated and real data sets, we show numerically that the proposed improvement helps

to achieve better performance without having to increase considerably the computational burden.

12The observations cover the period of April 1st 1994 - April 1st 2014.
13In this application, we do not calibrate the parameters using the BIC criterion because the sparsity pattern of

the precision matrix does not have an important role.
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Table 5. The out-of-sample variances for different portfolios.

Method p = 80 p = 200 p = 300

glasso 0.00203 0.00143 0.00106

r-glasso k = 1.5 0.00157 0.00101 0.00103

r-glasso k = 2 0.00142 0.00091 0.00088

r-glasso k = 2.5 0.00141 0.00088 0.00090

r-glasso k = 3 0.00138 0.00229 0.00110

r-glasso k = 3.5 0.00155 0.00116 0.00106

r-glasso k = 4 0.00158 0.00168 0.00103

r-glasso k = 4.5 0.00161 0.00282 0.00100

r-glasso k = 5 0.00165 0.00462 0.00108

clime 0.00162 0.00650 0.00210

In particular, the proposed r-glasso method provides lower statistical losses and higher accuracy

for covariance selection (e.g., prediction of Gaussian Graphical Models), than those for the glasso

method. Moreover, the proposed procedure attains better results to clime, being computation-

ally less demanding. Our proposed method requires the calibration of an additional parameter k

associated with the root transformation. We propose a calibration procedure based on the BIC

criterion. However, our results show that the square root transformation (e.g., k = 2) can be a

reasonable choice in practice. Finally, we establish the convergence rate of the proposed estimator

in the Frobenius norm, under certain conditions.

Appendix A. Analytical Results

We analyse the convergence rate of the proposed estimator Ω̂r-glasso for rational values of k.

Before proceeding with our results, we state the following main assumptions on the precision matrix

Ω:

A1 : λmin(Ω) ≥ α > 0,

A2 : λmax(Ω) ≤ ᾱ,
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for some positive values ᾱ and α.

Note that the assumptions A1 and A2 guarantee the existence of the matrix Ω. Also let the set

Z = {(i, j) : Ω
(1/k)
ij 6= 0} and card(Z) ≤ s. The following theorem presents the convergence rate of

the proposed r-glasso estimator.

Theorem 1. Suppose Ω̂r-glasso is the solution of problem (3) and k ∈ N. Under the assumptions

A1, A2, if ||Σ1/k − S1/k||∞ = OP (||Σ− S||∞) and ξk �
√

log p

n
,

||Ω̂r-glasso − Ω||2 = OP

(√
(p+ s) log p

n

)
. (A.1)

Proof of Theorem 1: We define our proposed r-glasso estimator as Ω̂r-glasso = Γ̂k, where Γ̂

is the solution of the problem (5). We note that the solution Γ̂ can be considered as the glasso

estimator for the matrix Ω1/k. Therefore, before proceeding with the convergence rate of the

estimator Ω̂r-glasso, we provide the convergence rate of estimator Γ̂. First, consider the following

conditions for the true model:

B1 : λmin(Ω1/k) ≥ β > 0,

B2 : λmax(Ω1/k) ≤ β̄,

for some positive values β̄ and β. Note that the conditions A1, A2 imply B1, B2 and vice versa.

We prove that under the assumptions of the Theorem 1

||Γ̂− Ω1/k||2 = OP

(√
(p+ s) log p

n

)
. (A.2)

The proof of (A.2) is inspired by Rothman et al. (2008). First, consider the following function

Q(Θ) = trace(ΘS1/k)− log det(Θ) + ξk||Θ||1 − trace(Ω1/kS1/k)− log det(Ω1/k)−

ξk||Ω1/k||1 = trace
(

(Θ− Ω1/k)(S1/k − Σ1/k)
)
−
(

log det(Θ)− log det(Ω1/k)
)

+

trace
(

(Θ− Ω1/k)Σ1/k
)

+ ξk

(
||Θ||1 − ||Ω1/k||1

)
. (A.3)

It can be seen that the estimator Γ̂ minimizes the function Q(Θ), and therefore ∆̂ = Γ̂ − Ω1/k

minimizes the function G(∆) = Q(Ω1/k + ∆). Consider the following set:

Φn(M) = {∆ : ∆ = ∆T , ||∆||2 = Mrn}, (A.4)
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where

rn =

√
(p+ s) log p

n
→ 0. (A.5)

Note that G(∆) = Q(Ω1/k + ∆) is a convex function, and G(∆̂) ≤ G(0) = 0. Then, if we show that

inf{G(∆) : ∆ ∈ Φn(M)} > 0, (A.6)

the minimizer ∆̂ must be inside the set defined by Φn(M), and therefore ||∆̂||2 ≤Mrn.

G(∆) = trace
(

∆(S1/k − Σ1/k)
)
−
(

log det(Ω1/k + ∆)− log det(Ω1/k)
)

+

trace
(

∆Σ1/k
)

+ ξk

(
||Ω1/k + ∆||1 − ||Ω1/k||1

)
. (A.7)

For the logarithm term in the equation (A.7), doing the Taylor expansion of the function f(t) =

log det(Θ + t∆), we get

log det(Ω1/k + ∆)− log det(Ω1/k) = trace(Σ1/k∆)−

∆̃T

 1∫
0

(1− ν)(Ω1/k + µ∆)−1 ⊗ (Ω1/k + µ∆)−1dν

 ∆̃, (A.8)

where ⊗ is the Kronecker product and ∆̃ is a vectorization of ∆. The equation (A.7) can be

rewritten in the following form

G(∆) = trace
(

∆(S1/k − Σ1/k)
)

+ ∆̃T

 1∫
0

(1− ν)(Ω1/k + µ∆)−1 ⊗ (Ω1/k + µ∆)−1dν

 ∆̃+

ξk

(
||Ω1/k + ∆||1 − ||Ω1/k||1

)
= T1 + T2 + T3. (A.9)

For an index set U and a matrix A = [aij ], denote AU = [aijI((i, j) ∈ U)], where I(·) is

an indicator function. Recall Z = {(i, j) : Ω
(1/k)
ij 6= 0} and Z̄ is its complement. Note that

||Ω1/k + ∆||1 = ||Ω1/k
Z + ∆Z ||1 + ||∆Z̄ ||1 and ||Ω1/k||1 = ||Ω1/k

Z ||1. From the triangular inequality

we have

T3 = ξk

(
||Ω1/k + ∆||1 − ||Ω1/k||1

)
≥ ξk (||∆Z̄ ||1 − ||∆Z ||1) . (A.10)
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Next, consider the term T1

|T1| =
∣∣∣trace

(
∆(S1/k − Σ1/k)

)∣∣∣ ≤
∣∣∣∣∣∣
∑
i 6=j

(S1/k − Σ1/k)ij∆ij

∣∣∣∣∣∣+

∣∣∣∣∣∑
i

(S1/k − Σ1/k)ii∆ii

∣∣∣∣∣ = T11 + T12.

(A.11)

To bound the terms T11 and T12, we use the following result (Bickel and Levina 2008)

||S − Σ||∞ = max
ij
|(S − Σ)ij | = OP

(√
log p

n

)
, (A.12)

which holds under the assumptions of the Theorem 1 and log p/n = o(1). On the other hand, the

assumption in Theorem 1 implies

max
ij
|(S1/k − Σ1/k)ij | = OP

(√
log p

n

)
. (A.13)

Therefore, using the sum inequality we can have the bound of the term T11, with probability tending

to 1,

T11 ≤ C1

√
log p

n
||∆−||1 ≤ C1

√
log p

n
||∆||1. (A.14)

From the Cauchy-Schwartz inequality we get

T12 ≤

[
p∑
i=1

(S1/k − Σ1/k)2
ii

]1/2

||∆+||2 ≤
√
p max

1≤i≤p
|(S1/k − Σ1/k)ii|||∆+||2 ≤

C2

√
p log p

n
||∆+||2 ≤ C2

√
(p+ s) log p

n
||∆||2, (A.15)

also with probability tending to 1.

Finally, it remains to check the bound of the second term T2. For ∆ ∈ Φn(M)

T2 ≥ λmin

 1∫
0

(1− ν)(Ω1/k + µ∆)−1 ⊗ (Ω1/k + µ∆)−1dν

 ||∆||22 ≥
1∫

0

(1− ν)λ2
min(Ω1/k + µ∆)−1dν||∆||22 ≥

1

2
min

0≤ν≤1
λ2

min(Ω1/k + ∆)−1||∆||22 ≥

1

2
min{λ2

min(Ω1/k + ∆)−1, ||∆||2 ≤Mrn}||∆||22. (A.16)
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On the other hand,

λ2
min(Ω1/k + µ∆)−1 = λ−2

max(Ω1/k + ∆) ≥ (||Ω1/k||+ ||∆||)−2 ≥ (β̄ + o(1))−2, (A.17)

since ||∆|| ≤ ||∆||2 = o(1), with probability tending to 1. Thus, we get

T2 ≥
1

2
||∆||22(β̄ + o(1))−2 =

1

2
||∆||22γ, (A.18)

where γ = (β̄ + o(1))−2.

By our assumption in Theorem 1, ξk �
√

log p

n
. Taking ξk =

C1

ε

√
log p

n
and using the obtained

bounds (A.10), (A.11), (A.18), we get

G(∆) ≥ 1

2
||∆||22γ − C1

√
log p

n
||∆||1 − C2

√
(p+ s) log p

n
||∆||2 + ξk (||∆Z̄ ||1 − ||∆Z ||1) =

1

2
||∆||22γ − C1

√
log p

n
(1− 1

ε
)||∆Z̄ ||1 − C1

√
log p

n
(1 +

1

ε
)||∆Z ||1 − C2

√
(p+ s) log p

n
||∆||2. (A.19)

Since the second term is always positive, we can omit it for the lower bound. Note that

||∆Z ||1 ≤
√
s||∆Z ||2 ≤

√
s||∆||2 ≤

√
s+ p||∆||2. (A.20)

Hence, we have

G(∆) ≥ 1

2
||∆||22γ − C1

√
(p+ s) log p

n
(1 +

1

ε
)||∆||2 − C2

√
(p+ s) log p

n
||∆||2 ≥

||∆||22

[
1

4
γ − C1

√
(p+ s) log p

n
(1 +

1

ε
)||∆||−1

2

]
+ ||∆||22

[
1

4
γ − C2

√
(p+ s) log p

n
||∆||−1

2

]
=

||∆||22
[

1

4
γ − C1

M
(1 +

1

ε
)

]
+ ||∆||22

[
1

4
γ − C2

M

]
> 0. (A.21)

for M sufficiently large. This establishes the convergence rate (A.2).

To obtain the convergence rate of our estimator, we prove the following lemma:

Lemma 1. For any symmetric, p.d. matrices A and B and for any finite q ∈ N, if ||A||spec =

OP (1), ||B||spec = OP (1), ||A||min = OP (1) and ||B||min = OP (1), then

||Aq −Bq||2
P� ||A−B||2.. (A.22)
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Proof of Lemma 1: For any matrices A and B, we have that

Aq −Bq =

q∑
i=1

Aq−i(A−B)Bi−1. (A.23)

Therefore, we can write the following:

||Aq −Bq||22 = trace
(
(Aq −Bq)(Aq −Bq)T

)
=

trace

((
q∑
i=1

Aq−i(A−B)Bi−1

)(
q∑
i=1

Bi−1(A−B)Aq−i

))
=

trace

 q∑
i=1

q∑
j=1

Aq−i(A−B)Bi−1Bj−1(A−B)Aq−j

 =

trace

 q∑
i=1

q∑
j=1

A2q−i−j(A−B)Bi+j−2(A−B)

 =

q∑
i=1

q∑
j=1

trace
(
A2q−i−j(A−B)Bi+j−2(A−B)

)
. (A.24)

Next, for any symmetric matrices X, Y and Z consider trace(XY ZY ). For any matrix A, we

denote A·i and Ai· as the i -th row and the i -th column of matrix A, respectively. We can write

trace(XY ZY ) =

p∑
i=1

(XY )i·ZY·i ≤ λmax(Z)

p∑
i=1

(XY )i·Y·i = λmax(Z)trace(XY Y ) =

λmax(Z)

p∑
i=1

Yi·X(Y·i) ≤ λmax(Z)λmax(X)

p∑
i=1

Yi·(Y·i) =

λmax(Z)λmax(X)trace(Y Y T ) = λmax(Z)λmax(X)||Y ||22. (A.25)

Similarly, we can write

trace(XY ZY ) =

p∑
i=1

(XY )i·ZY·i ≥ λmin(Z)

p∑
i=1

(XY )i·Y·i = λmin(Z)trace(XY Y ) =

λmin(Z)

p∑
i=1

Yi·X(Y·i) ≥ λmin(Z)λmin(X)

p∑
i=1

Yi·(Y·i) =

λmin(Z)λmin(X)trace(Y Y T ) = λmin(Z)λmin(X)||Y ||22. (A.26)

We summarize the expressions (A.25) and (A.26) as the following:

λmin(Z)λmin(X)||Y ||22 ≤ trace(XY ZY ) ≤ λmax(Z)λmax(X)||Y ||22. (A.27)
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We can apply the inequalities in (A.27) on the trace of the equality (A.24). Thus, we can write the

following two inequalities:

q∑
i=1

q∑
j=1

trace
(
A2q−i−j(A−B)Bi+j−2(A−B)

)
≥

||A−B||22
q∑
i=1

q∑
j=1

λmin(A2q−i−j)λmin(Bi+j−2), (A.28)

q∑
i=1

q∑
j=1

trace
(
A2q−i−j(A−B)Bi+j−2(A−B)

)
≤

||A−B||22
q∑
i=1

q∑
j=1

λmax(A2q−i−j)λmax(Bi+j−2). (A.29)

From the inequalities (A.28), (A.29) and the equality (A.24) it follows that

||Aq −Bq||2 ≥ ||A−B||2

 q∑
i=1

q∑
j=1

λmin(A2q−i−j)λmin(Bi+j−2)

 1
2

, (A.30)

||Aq −Bq||2 ≤ ||A−B||2

 q∑
i=1

q∑
j=1

λmax(A2q−i−j)λmax(Bi+j−2)

 1
2

. (A.31)

Since q is finite, the assumptions λmax(A) = ||A||spec = OP (1), λmax(B) = ||B||spec = OP (1),

λmin = (A)||A||min = OP (1), λmin(A) = ||B||min = OP (1) imply that the following rates: q∑
i=1

q∑
j=1

λmin(A2q−i−j)λmin(Bi+j−2)

 1
2

= OP (1), (A.32)

 q∑
i=1

q∑
j=1

λmax(A2k−i−j)λmax(Bi+j−2)

 1
2

= OP (1). (A.33)

From the inequalities (A.30), (A.31), (A.32) and (A.33) it follows that

||Aq −Bq||2
P� ||A−B||2, (A.34)

which concludes the proof of Lemma 1.
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From the assumptions B1 and B2 it follows that ||Ω 1
k ||min = O(1) and ||Ω 1

k ||spec = O(1),

respectively. Assuming that n grows faster than p, the rate (A.2) implies that ||Γ̂||min = OP (1) and

||Γ̂||spec = OP (1). Now, if we consider q = k, A = Γ̂, B = Ω
1
k , we will have Aq = Γ̂k = Ω̂r-glasso and

Bq = Ω. Therefore, Lemma 1 implies that

||Ω̂r-glasso − Ω||2
P� ||Γ̂− Ω

1
k ||2, (A.35)

which concludes the proof of the theorem for k ∈ N.

We can prove the Theorem 1 under assumption that k is a rational number. We express k as a

fraction
r

m
, where r,m ∈ N. In this case we have that Ω̂r-glasso = Γ̂

r
m . If we consider q = r, A = Γ̂,

B = Ω
m
r , we will have Aq = Γ̂r and Bq = Ωm. Since r and m are finite, we can use the Lemma

(1), which implies that

||Γ̂r − Ωm||2
P� ||Γ̂− Ω

m
r ||2. (A.36)

On the other hand, if we consider q = m, A = Γ̂
r
m , B = Ω, we will have Aq = Γ̂r and Bq = Ωm.

Therefore, as previously, Lemma (1) implies that

||Γ̂r − Ωm||2
P� ||Γ̂ r

m − Ω||2. (A.37)

Summarizing (A.36) and (A.37), we will have the following:

||Γ̂− Ω
m
r ||2

P� ||Γ̂ r
m − Ω||2, (A.38)

Finally, (A.2) and (A.38) establish the rate (A.1) for rational k =
r

m
.
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Appendix B. Performance Measures for Simulation Study

Table B.6. Average KL losses (with standard deviations) over 100 replications.

Model 1

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 12.225 (0.832) 5.049 (0.462) 7.8280 (0.231) 9.0541 (1.328)

200 34.760 (1.469) 19.770 (1.063) 18.970 (0.397) 21.015 (0.481)

300 62.975 (1.927) 41.488 (0.667) 41.488 (0.667) 40.036 (2.648)

Model 2

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 14.382 (0.902) 8.336 (0.548) 10.244 (0.684) 12.556 (1.743)

200 40.423 (1.634) 28.555 (0.718) 28.511 (0.542) 30.094 (0.507)

300 69.625 (1.704) 52.375 (0.961) 52.375 (0.961) 56.741 (4.129)

Model 3

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 15.572 (0.959) 10.883 (0.965) 12.985 (0.959) 18.316 1.6251

200 44.006 (1.672) 33.932 (0.803) 33.932 (0.803) 38.444 1.1220

300 73.999 (2.026) 57.472 (0.761) 57.472 (0.761) 62.256 0.6433

Model 4

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 16.076 (0.798) 12.073 (1.227) 13.102 (0.963) 18.019 (2.497)

200 45.844 (1.786) 34.595 (0.756) 34.554 (0.581) 37.908 (2.629)

300 78.341 (2.003) 65.810 (1.822) 65.810 (1.822) 76.770 (2.498)

Model 5

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 11.134 (0.936) 10.413 (0.447) 10.399 (0.433) 13.145 1.920

200 28.082 (0.989) 16.684 (2.571) 16.684 (2.571) 21.429 1.510

300 49.287 (0.486) 34.198 (1.421) 34.198 (1.421) 35.856 4.437

Model 6

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 17.553 (0.483) 12.735 (0.247) 12.735 (0.247) 13.457 (0.274)

200 38.697 (0.450) 26.778 (0.859) 26.778 (0.859) 28.413 (0.420)

300 58.169 (0.386) 46.054 (1.179) 46.054 (1.179) 41.965 (0.536)

Model 7

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 17.194 (0.528) 12.363 (0.365) 12.434 (0.334) 12.983 (0.308)

200 38.163 (0.932) 26.409 (0.743) 26.409 (0.743) 27.850 (0.378)

300 57.904 (0.399) 45.602 (1.051) 45.602 (1.051) 41.531 (0.555)
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Table B.7. MSE (with standard deviations) over 100 replications.

Model 1

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 4.609 (0.256) 0.722 (0.094) 2.433 (0.079) 1.997 (0.304)

200 11.383 (0.324) 3.665 (0.514) 4.064 (0.110) 3.991 (0.161)

300 19.325 (0.353) 7.394 (0.099) 7.394 (0.099) 7.105 (0.732)

Model 2

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 5.275 (0.239) 1.686 (0.106) 3.281 (0.207) 3.216 (0.400)

200 12.858 (0.301) 6.979 (0.182) 6.995 (0.091) 6.575 (0.137)

300 20.531 (0.297) 9.658 (0.206) 9.658 (0.206) 11.249 (1.174)

Model 3

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 5.565 (0.229) 1.756 (0.145) 3.903 (0.233) 3.709 (0.338)

200 13.207 (0.301) 7.523 (0.191) 7.523 (0.191) 7.319 (0.267)

300 21.214 (0.331) 10.750 (0.100) 10.750 (0.100) 13.185 (0.159)

Model 4

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 6.324 (0.212) 2.467 (0.596) 4.387 (0.252) 4.188 (0.510)

200 13.989 (0.331) 7.787 (0.217) 7.807 (0.105) 7.766 (0.640)

300 22.708 (0.303) 12.286 (0.593) 12.286 (0.593) 15.210 (0.684)

Model 5

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 31.298 (2.435) 21.720 (1.365) 21.612 (0.773) 29.116 (4.448)

200 75.484 (1.984) 22.586 (5.487) 22.586 (5.487) 47.712 (3.624)

300 127.591 (0.710) 23.393 (1.448) 23.393 (1.448) 78.381 (11.235)

Model 6

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 117.466 (1.621) 97.470 (0.890) 97.470 (0.890) 100.700 (1.218)

200 247.054 (1.251) 184.370 (4.257) 184.370 (4.257) 209.921 (1.616)

300 371.535 (0.966) 217.055 (2.138) 217.055 (2.138) 311.636 (2.055)

Model 7

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 111.704 (1.797) 91.816 (1.870) 92.229 (1.240) 94.703 (1.257)

200 240.704 (2.739) 179.012 (3.692) 179.012 (3.692) 203.530 (1.398)

300 365.989 (0.970) 212.590 (1.954) 212.590 (1.954) 305.770 (2.050)
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Table B.8. Average specificity (with standard deviations) over 100 replications.

Model 1

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.941 (0.009) 0.998 (0.001) 0.987 (0.004) 0.977 (0.008)

200 0.973 (0.003) 0.998 (0.0009) 0.997 (0.0008) 0.994 (0.0008)

300 0.983 (0.002) 0.999 (0.0001) 0.999 (0.0001) 0.993 (0.001)

Model 2

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.947 (0.009) 0.994 (0.002) 0.986 (0.005) 0.983 (0.009)

200 0.972 (0.004) 0.996 (0.0008) 0.996 (0.0008) 0.992 (0.001)

300 0.983 (0.001) 0.999 (0.0003) 0.999 (0.0003) 0.997 (0.002)

Model 3

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.938 (0.010) 0.992 (0.003) 0.986 (0.005) 0.978 (0.011)

200 0.972 (0.004) 0.997 (0.001) 0.997 (0.001) 0.990 (0.001)

300 0.984 (0.002) 0.999 (0.0001) 0.999 (0.0001) 0.999 (0.0002)

Model 4

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.938 (0.007) 0.993 (0.003) 0.984 (0.005) 0.972 (0.014)

200 0.974 (0.003) 0.997 (0.0008) 0.997 (0.0008) 0.990 (0.003)

300 0.984 (0.001) 0.999 (0.0006) 0.999 (0.0006) 0.998 (0.001)

Model 5

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.932 (0.010) 0.947 (0.004) 0.947 (0.004) 0.965 (0.016)

200 0.967 (0.002) 0.972 (0.005) 0.972 (0.005) 0.985 (0.002)

300 0.981 (0.0009) 0.989 (0.001) 0.989 (0.001) 0.994 (0.004)

Model 6 14

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 N/A N/A N/A N/A

200 N/A N/A N/A N/A

300 N/A N/A N/A N/A

Model 7

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.980 (0.005) 0.992 (0.003) 0.992 (0.003) 0.963 (0.006)

200 0.992 (0.002) 0.998 (0.001) 0.998 (0.001) 0.993 (0.001)

300 0.992 (0.0006) 0.997 (0.0006) 0.997 (0.0006) 0.994 (0.0005)

14Specificity and MCC (see Table B.10) are not considered for model 6, because these measurements are not defined

for dense models.
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Table B.9. Average sensitivity (with standard deviations) over 100 replications.

Model 1

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.501 (0.020) 0.485 (0.032) 0.498 (0.021) 0.430 (0.031)

200 0.225 (0.010) 0.196 (0.009) 0.202 (0.007) 0.211 (0.006)

300 0.163 (0.006) 0.138 (0.005) 0.138 (0.005) 0.164 (0.010)

hline Model 2

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.290 (0.017) 0.283 (0.023) 0.274 (0.019) 0.243 (0.036)

200 0.148 (0.008) 0.145 (0.006) 0.145 (0.005) 0.146 (0.005)

300 0.100 (0.004) 0.081 (0.004) 0.081 (0.004) 0.078 (0.011)

Model 3

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.203 (0.015) 0.186 (0.020) 0.189 (0.016) 0.163 (0.021)

200 0.096 (0.006) 0.080 (0.005) 0.080 (0.005) 0.084 (0.005)

300 0.062 (0.004) 0.042 (0.001) 0.042 (0.001) 0.036 (0.001)

Model 4

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.290 (0.013) 0.353 (0.056) 0.345 (0.029) 0.246 (0.041)

200 0.147 (0.010) 0.139 (0.007) 0.140 (0.007) 0.132 (0.016)

300 0.100 (0.004) 0.092 (0.010) 0.092 (0.010) 0.066 (0.006)

Model 5

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 1 (0) 1 (0) 1 (0) 1 (0)

200 1 (0) 1 (0) 1 (0) 1 (0)

300 1 (0) 1 (0) 1 (0) 1 (0)

Model 6

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.049 (0.004) 0.060 (0.003) 0.060 (0.003) 0.084 (0.006)

200 0.022 (0.001) 0.027 (0.001) 0.027 (0.001) 0.029 (0.001

300 0.017 (0.0005) 0.019 (0.0005) 0.019 (0.0005) 0.019 (0.0004)

Model 7

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.136 (0.006) 0.207 (0.014) 0.204 (0.006) 0.219 (0.009)

200 0.066 (0.002) 0.100 (0.001) 0.100 (0.001) 0.096 (0.002)

300 0.046 (0.0009) 0.068 (0.001) 0.068 (0.001) 0.061 (0.001)
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Table B.10. Average MCC (with standard deviations) over 100 replications.

Model 1

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.350 (0.020) 0.660 (0.021) 0.563 (0.033) 0.443 (0.042)

200 0.230 (0.010) 0.408 (0.013) 0.394 (0.013) 0.364 (0.013)

300 0.205 (0.007) 0.349 (0.007) 0.349 (0.007) 0.291 (0.014)

Model 2

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.269 (0.016) 0.463 (0.015) 0.400 (0.027) 0.356 (0.027)

200 0.186 (0.008) 0.326 (0.009) 0.326 (0.010) 0.283 (0.010)

300 0.159 (0.005) 0.258 (0.005) 0.258 (0.005) 0.234 (0.012)

Model 3

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.199 (0.013) 0.352 (0.015) 0.325 (0.018) 0.262 (0.021)

200 0.138 (0.006) 0.230 (0.007) 0.230 (0.007) 0.196 (0.007)

300 0.121 (0.005) 0.180 (0.004) 0.180 (0.004) 0.161 (0.003)

Model 4

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.263 (0.013) 0.527 (0.039) 0.473 (0.027) 0.326 (0.024)

200 0.204 (0.006) 0.330 (0.011) 0.330 (0.011) 0.265 (0.008)

300 0.175 (0.004) 0.275 (0.009) 0.275 (0.009) 0.223 (0.006)

Model 5

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.543 (0.030) 0.592 (0.017) 0.592 (0.017) 0.686 (0.075)

200 0.555 (0.019) 0.593 (0.039) 0.593 (0.039) 0.707 (0.045)

300 0.593 (0.010) 0.696 (0.016) 0.696 (0.016) 0.826 (0.105)

Model 6

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 N/A N/A N/A N/A

200 N/A N/A N/A N/A

300 N/A N/A N/A N/A

Model 7

p glasso r-glasso k = kBIC r-glasso k = 2 clime

100 0.237 (0.014) 0.372 (0.022) 0.368 (0.014) 0.290 (0.014)

200 0.173 (0.008) 0.265 (0.006) 0.265 (0.006) 0.229 (0.006)

300 0.131 (0.004) 0.207 (0.005) 0.207 (0.005) 0.178 (0.003)
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