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Abstract

In order to improve the efficiency and sustainability of electricity systems, most countries worldwide are
deploying advanced metering infrastructures, and in particular household smart meters, in the residential sector.
This technology is able to record electricity load time series at a very high frequency rates, information that can
be exploited to develop new clustering models to group individual households by similar consumptions patterns.
To this end, in this work we propose three hierarchical clustering methodologies that allow capturing different
characteristics of the time series. These are based on a set of “dissimilarity” measures computed over different
features: quantile auto-covariances, and simple and partial autocorrelations. The main advantage is that they allow
summarizing each time series in a few representative features so that they are computationally efficient, robust
against outliers, easy to automatize, and scalable to hundreds of thousands of smart meters series. We evaluate the
performance of each clustering model in a real-world smart meter dataset with thousands of half-hourly time series.
The results show how the obtained clusters identify relevant consumption behaviors of households and capture part
of their geo-demographic segmentation. Moreover, we apply a supervised classification procedure to explore which
features are more relevant to define each cluster.

Index Terms

Quantile auto-variances, massive time-series, hierarchical clustering, smart meters.

I. INTRODUCTION

A. Background and Aim

MOVED by the need of improving the efficiency and sustainability of aging electrical systems, many
countries worldwide are adopting new information and communication technologies, with special

emphasis on the residential sector [1]. These technologies imply a new paradigm in the economic and
technical operation of distribution networks, and create new business opportunities for all the companies
that take part in the electricity supply chain.

It is very relevant the extended integration of advanced metering infrastructures (AMI) [2] with a special
role played by households “smart meters”. These devices allow recording electricity consumption data
at a very high frequency rate and instantly transmit this information to the retailing and/or distribution
companies.

Furthermore, as many electricity markets worldwide are open to competition in both the generation and
retailing sectors, there is a growing interest by the electrical companies in using these data to increase
their profit, their market share or the consumers’ welfare. In this vein, the treatment of these new datasets
requires the research and implementation of novel data science techniques, with practical applications on
energy fraud detection, outlier identification, consumers profiling, demand response, tariff design, load
forecasting, etc. [3].
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The special characteristics of the data stored by smart meters (hundreds of thousands, or even millions,
of high frequency time series), and their combination with exogenous variables (meteorological, calendar,
economical, etc.), open the possibility of designing specific clustering models for household consumers.
Furthermore, these models can help to better understand the behavior of both aggregated and disaggregated
electrical loads [4], and how this knowledge can be exploited to improve electrical systems.

In particular, clustering households with similar consumption patterns has many potential applications.
One of the most relevant is customer segmentation (see [5]), where energy retailers may use the clusters
to improve their business decision making by offering personalized tariffs depending on the seasons.
Other interesting application where clustering methodologies could be applied is demand response (DR)
policies, see [6]. Energy retailers can plan and conduct these policies through the different load profiles
from the clusters, saving both on physical energy demand (by automatic control in the smart grid) and
electrical bills for customers (by adjusting consumption on electricity price). These techniques can also be
applied to detect and reduce electricity theft, through the analysis of some small and anomalous groups
with atypical and potentially malicious consumption.

Another important application of clustering techniques is to combine the obtained clusters with a
forecasting procedure. That is, instead of individually predicting each time series by selecting a model, we
can exploit that the series belonging to the same group have a similar dynamic behavior and we can obtain
a joint model for these series. For example, in [7], it is shown that a dynamic factorial model with cluster
structure improves the prediction performance of the classical factorial model. Similarly, the forecasting
model may benefit from the hierarchical structure of a cluster. For instance, in [8] a forecasting tool is
applied incrementally to each node of a hierarchical clustering similar to the one used in this paper. This
approach does not need to define in advance the number of clusters and allows for forecasting at different
granularity levels.

In this work we propose different hierarchical-based clustering strategies based on a set of “dissimilarity”
measures: quantile auto-covariance, and simple and partial autocorrelations. The use of these measures
for load clustering is, as far as we know, new in the smart grid literature.

These strategies summarize each consumption time series in only a few representative features so that
they are highly efficient, easy to automatize and scalable to hundreds of thousands of series, i.e., can
be successfully implemented in large-scale applications that make use of smart meters datasets. Another
advantage on the use of these measures is that they are robust against possible outliers and/or reading
errors, that most standard clustering methods would not be able to handle, and very present in smart meter
time series.

We test the performance of our clustering models by using a real-world dataset with thousands of
electricity consumption time series. The results are promising as the obtained clusters not only identify
relevant consumption patterns but also capture part of the geo-demographic segmentation of the consumers.
Moreover, an innovative contribution of this work is that we implement a multiclass supervised classifica-
tion algorithm, based on decision trees, in order to characterize the most important features conditioning
each cluster.

B. Literature Review
A review of several clustering techniques to group similar electricity consumers is presented in [9].

It is shown that the overall performance of the different techniques is related to their ability to isolate
outliers. A clustering method for household consumers based on K-means and Principal Components
Analysis (PCA) is proposed in [10]. The resulting clusters are subject to a multiple regression analysis to
identify relevant explanatory variables. The work in [11] addresses the consumer segmentation problem
by normalizing the daily load shapes for each consumer, together with their total consumption, to apply
an adaptive K-means algorithm. A clustering model based on K-means is proposed in [12] to, focusing
on commercial and industrial electricity consumers, identify candidate users for energy efficiency policies
and their businesses opening and closing hours. The work in [13] evaluates and compare three clustering
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techniques for smart meter data: k-medoid, K-means and Self Organizing Maps (SOM), to show that
the latter presented to overall best performance. Traditional time series methods are applied in [14], like
wavelets or autocorrelation analysis, to the raw smart meter data to enrich the input of a K-mean based
clustering algorithm for consumers segmentation. [15] proposes to use dynamic information, in terms of
transitions between adjacent time periods, for consumers segmentation. The resulting clusters are used to
evaluate their potential for demand response policies.

Several works seek to identify relevant features that condition the dynamic patterns of electricity
consumers. For instance, [16] proposed a methodology to examine smart meter data and identify impor-
tant determinants of consumers electricity load. A mixture model framework, based on linear Gaussian
approximations, is used by [17] to derive relevant load profiles from individual consumption patterns.
With the same aim, a supervised Machine Learning (ML) model is proposed in [18] based on individual
household consumption time series. A detailed analysis of household consumption data is presented in
[19] to identify those time periods from which relevant consumption features can be extracted. Based on
these features, a mixture-based clustering algorithm is proposed and evaluated by bootstrap techniques.
To extend the number of features that can potentially be used for profiling consumers, [20] complement
the smart meter data with door-to-door question surveys. It is shown how this new dataset improves the
performance of a Ward’s hierarchical clustering algorithm.

Clustering models pose relevant computational challenges when the number of time series increases.
Hence there are several works that focus on improving the efficiency of the clustering algorithms.
An efficient frequency domain hierarchical clustering model is proposed [21] to derive adequate load
profiles. Moreover, [22] studies how the temporal resolution of the consumption time series may have
a strong impact on both the quality and computational performance of the clustering techniques. [23]
proposes a feature construction model for time series to cluster similar consumers. The model reduces
the dimensionality of the problem by using conditional filters and profile errors. With a similar aim,
[24] presents a two-level clustering methodology to derive representative consumptions profiles based on
K-means. The first level is used to obtain local profiles that are generalized in the second level.

Clustering techniques have been used also to improve the accuracy of forecasting models. A clustering
K-Means based algorithm is employed in [25] to household load curves to group similar consumers
and enhance the performance of a nonparametric functional wavelet-kernel approach. Similarly, [26],
implements a K-means based clustering algorithm to group similar consumers and then adjust a Neural
Network (NN) forecasting model for aggregated loads. A K-means based algorithm is employed in [27]
to derive consumption estimates and impute missing data. The cross-similarities between consumptions
series is used by [28] to enhance the performance of a forecasting model, based on Long Short-term
Memory (LSTM) networks. [29] also makes used of consumers segmentation through PCA and K-means
clustering to identify typical daily consumption profiles that can improve the accuracy of a ML forecasting
tool.

C. Contributions
We build part of our research on the original methodology presented in [30], which proposes to cluster

time series based on quantile autocovariances distances. An extensive simulation analysis and a real-world
application on daily financial time series show the ability of this approach to identify different dependence
models among the series.

In the present work, and by the first time to the authors knowledge, we adapt and extend part of the
methodology in [30] to identify relevant clusters from a real-world dataset including thousands of smart
meters time series.

Moreover, by considering the state of the art presented in Section I-B, the main contributions of this
work are fourfold:

1) To summarize each smart meter time series in a small set of meaningful features: autocorrelation
coefficients, partial autocorrelation coefficients and quantile autocovariances.
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2) To propose three hierarchical clustering models, based on Euclidean dissimilarity measures, com-
puted over the previous features. The models are computationally efficient and robust against outlier
observations.

3) To test the proposed methodology in a real dataset, including thousands of half-hourly load time
series, to: a) characterize relevant electricity consumption profiles and b) to verify that the resulting
clusters are able to capture, up to some extent, the geo-demographic segmentation of household
consumers.

4) To make use of a supervised classification procedure (decision trees) to identify those variables
(features) that have been more relevant to form the resulting clusters.

D. Paper Organization
This paper is organized as follows. In Section II the proposed hierarchical clustering methodology for

smart meter time series is presented. The numerical results, based on a real-world dataset, are presented
in Section III. Finally, Section IV presents the main conclusions derived from this work.

II. THE CLUSTERING METHODOLOGY

Let’s assume that we observe N time series, {XXX1,XXX2, . . . ,XXXN} where XXX i = (Xi,ti , Xi,ti+1, . . . , Xi,Ti)
and (ti, Ti) denotes the first and the last times where the i-th time series is observed, respectively. In our
dataset, the (ti, Ti) are the same for all time series but our procedures do not require this condition since
they are based on extracted features from the time series. As mentioned in the previous section, there are
many interesting features to consider as “clustering” variables instead of using raw data. In our case, we
consider three sets of features that capture different aspects of the time series dynamic behavior:
• The set of autocorrelation coefficients of orders (1, 2, . . . , K), that is, we calculate the correlation

coefficient between the variables Xi,t and Xi,t+j for j = 1, 2, . . . , K defined by

ρi(t, t+ j) =
Cov (Xi,t, Xi,t+j)

(V ar(Xi,t)V ar(Xi,t+j))1/2
. (1)

• The set of partial autocorrelation coefficients of orders (1, 2, . . . , K), that is, we calculate the
correlation coefficient between observations separated by j periods, Xi,t and Xi,t+j , when we eliminate
the linear dependence due to intermediate values. The partial autocorrelation coefficient will be
denoted by πi(t, t+ j).

• The set of quantile autocovariances of order j at quantile levels (τ, τ ′) ∈ [0, 1]2 defined by

γi,(τ,τ ′)(t, t+ j) =

Cov (I(Xi,t ≤ qτ,i), I(Xi,t+j ≤ qτ ′,i)) , (2)

where I(·) denotes the indicator function and qτ,i and qτ ′,i are the τ− and τ ′−quantiles of Xi,t and
Xi,t+j , respectively.

An exhaustive study of these simple and partial autocorrelation coefficients can be found in the excellent
book [31] and for quantile autocovariances we refer the reader to [32] and [33].

It is interesting to realize the differences among features (1) and (2) since both involve the calculation
of a covariance between observations separated by j periods. In (1), the covariance term is estimated by

1

Ti − j

Ti−j∑
t=ti

Xi,tXi,t+j

− 1

Ti − j

Ti−j∑
t=ti

Xi,t ∗
1

Ti − j

Ti−j∑
t=ti

Xi,t+j,



5

which involves the products Xi,tXi,t+j that can be distorted by extreme or outlier observations. For
example, two very high loads observed at a distance of j periods would spuriously increase the correlation
at the j−lag. On the other hand, the quantile autocovariance (2) is estimated by

γ̂i,(τ,τ ′)(t, t+ j) =

1

Ti − j

Ti−j∑
t=ti

I(Xi,t ≤ q̂τ,i)I(Xi,t+j ≤ q̂τ ′,i) − ττ ′. (3)

The involved products I(Xi,t ≤ q̂τ,i)I(Xi,t+j ≤ q̂τ ′,i are bounded which imply a negligible effect of
outliers. The expression (3) can be interpreted as a mean of the number of times that values at t below
q̂τ,i coincide with values at t + j below q̂τ ′,i. The term ττ ′ is the number of coincidences that occur
completely randomly. Therefore, a positive γ̂i,(τ,τ ′) means that the number of matches is greater (smaller)
than expected by chance.

It should be noticed that the above characteristics, in general, depend on t and j, but if the time series
are stationary, then they do not depend on t, which simplifies their analysis. For this reason, we first
consider the logarithmic transformation and then the seasonal (daily) difference of the smart meter’s time
series since the resulting time series can be considered stationary. That is, as the time series that will be
used in this paper present a half-hourly frequency, then Xi,t = `i,t − `i,t−48 are the series to be clustered,
where `i,t = logLi,t denotes the logarithm of the load time series of the i-th time series. We should
fix the largest lag, K, in the sets of autocorrelation and partial autocorrelation coefficients. We can fit
autoregressive models to all the univariate time series, selecting the order by the BIC criterion, and take
K = max1≤i≤N(pi), where pi is the selected order for i-th time series. It is shown in [34] that this
procedure provides an upper bound of the memory of N stationary linear time series. The selected K was
96. This selection allows us to capture the main linear dependencies in all time series. Also, for the set of
quantile autocovariances, we should fix the lag and quantile levels. In this case, following the suggestions
of [30], we use j = 1 and τ ∈ {0.1, 0.5, 0.9} since these values have shown that they are capable of
capturing and differentiating different types of nonlinearities. Finally, the three clustering analyzes will
be based on the following sets of features:

a) ρρρi = {ρi(1), ρi(2), . . . , ρi(96)}i∈{1,2,...,N}
b) πππi = {πi(1), πi(2), . . . , πi(96)}i∈{1,2,...,N}
c) γγγi = {γi, (0.1, 0.1), γi, (0.1, 0.5), γi, (0.1, 0.9), γi(0.5, 0.1), γi(0.5, 0.5), γi(0.5, 0.9), γi(0.9, 0.1),

γi(0.9, 0.5), γi(0.9, 0.9)}i∈{1,2,...,N}
Thus, the analysis will be based on 96×1 vectors of features for autocorrelation and partial autocorrelation
coefficients and based on 9×1 vectors of features for quantile autocovariances. Once we have the vectors
of features, we define a dissimilarity measure between time series XXX i and XXXj by the Euclidean distance
of the corresponding vectors. That is:

a) dAC(XXX i,XXXj) = ‖ρρρi − ρρρj‖2
b) dPAC(XXX i,XXXj) = ‖πππi − πππj‖2
c) dQC(XXX i,XXXj) = ‖γγγi − γγγj‖2

where ‖ · ‖ denotes de Euclidean distance and AC, PAC and QC stand for autocorrelation, partial
autocorrelation and quantile autocorrelation coefficients, respectively.

The distances dM(XXX i,XXXj) will be obtained for all pairs (i, j) with i 6= j to construct the following
N ×N dissimilarity matrix

DMDMDMM =
0 dM(X1, X2) . . . dM(X1, XN)

dM(X2, X1) 0 . . . dM(X2, XN)
...

... . . . ...
dM(XN , X1) dM(XN , X2) . . . 0

 (4)
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where M ∈ {AC,PAC,QC}. The dissimilarity matrix (4) can be used in any cluster procedure which
requires this kind of input. In particular, we can apply hierarchical clustering since it allows us to identify
clusters as well as hierarchies among the clusters. In hierarchical cluster procedures, to decide which groups
should be combined, it is necessary to choose a measure of dissimilarity (linkage criterion) between sets.
It is important to emphasize that this choice will influence the shape of the groups, since some sets could
be close according to one distance and far according to another. The three best known measures are
minimum or single-linkage (ds), maximum or complete-linkage (dc) and average linkage (da) defined by:

ds(A,B) = min{d(Xi, Xj) : i ∈ A, j ∈ B}

dc(A,B) = max{d(Xi, Xj) : i ∈ A, j ∈ B}

da(A,B) =
1

nAnB

nA∑
i=1

nB∑
i=1

d(Xi, Xj),

where A and B are two sets of observations having nA and nB elements, respectively.
In this work, we prefer to use complete linkage as it ensures that the observations in a group are

“similar” to all observations of the same group in the sense that once the cut-off point in the dendrogram
has been set all the distances within of a cluster are smaller than this cut-off point.

For the comparison of the different clustering results, we use the adjusted Rand index, ARI, which
is based on counting pairs. The adjusted Rand index proposed by [35] compares two different cluster
partition, C = (C1, . . . , Ck) and C ′ = (C ′1, . . . , C

′
k′) using the following formulas:

ARI(C,C ′) =∑k
i=1

∑k′

j=1

(#(Ci
⋂
C′

j)

2

)
−
∑k

i=1

(
#(Ci)

2

)∑k′

j=1

(#(C′
j)

2

)
/
(
n
2

)(∑k
i=1

(
#(Ci)

2

)
+
∑k′

j=1

(#(C′
j)

2

))
/2−

∑k
i=1

(
#(Ci)

2

)∑k′

j=1

(#(C′
j)

2

)
/
(
n
2

) .
The closer to one the index, the higher is the agreement between the two partitions.
Once we obtain the groups, an interesting question is to know which variables have been the most

relevant to form these groups. This question can be addressed through the use of a supervised classification
procedure where the labels of the observations will be the result of the clustering methodology. That is,
if we have k clusters, we will assign the labels {1, 2, . . . , k} to the observations of the respective clusters.
These labels and the features will be the input of the supervised classification procedure. In this work,
we will use decision trees [36] for multiclass classification problem since for this procedure unbiased
estimates of the predictor (feature) importance [37] are available. In a decision tree, the importance of a
given feature (predictor), X , used to predict Y can be calculated as

I(X) =
∑
t

Nt

N
δi(t),

where the sum is on the nodes t that use feature X and δi(t) = i(t)−NL

Nt
i(tL)−NR

Nt
i(tR), that is, the change

of index i when the node t is splitted into the left node, tL, and the right node, tR. Nt, NR and NL are
the number of observations at the nodes t, tL and tR, respectively. The index i is called impurity function
and usual selection are the Gini index, the Shannon entropy, or the variance of Y (see, for instance, [38]).
In addition, we can estimate the misclassification rate of the decision tree by a cross-validation procedure.
The misclassification rate is the proportion of observations (time series) to which a different label from
its “original” label is assigned. It should be noted that here the “original” labels are those created by the
grouping procedure.
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III. NUMERICAL RESULTS

In this section we use the public energy consumption dataset from [39]. It includes a sample of 5,567
households of London with their individual electricity consumption time series during 2013, in kWh
(per half hour), date and time, and CACI ACORN segmentation (6 geo-demographic categories) [40]. In
particular, to validate this work’s clustering methodology, we will compare the resulting clusters with the
geo-demographic aggregated categories coded as “ACORN GROUPED”, which classify households into
three main groups: “Affluent”, “Comfortable” and “Adversity”. Moreover, the dataset is also divided into
two subgroups of consumers:

i) std tariff : Consumers whose electricity tariff is fixed (standard) to a constant price during the time
of the study.

ii) tou tariff : Consumers with “time of use” tariff for which the electricity price is different for each
hour.

In order to better characterized the inherent consumption behavior of individual households, we have
focused the following study on the std tariff consumers, as these are not influenced by a variable price
signal. This initial group includes approximately 4500 time series from which some of them are discarded,
due a high proportion of missing observation, rendering a final subsample of around 3200 time series
(households) with readings from 01/01/2013 until 12/31/2013. It should be noted that some of the time
series present different start or end dates within this range. However, the proposed clustering strategies
do not need time series to be observed in exactly the same date range, and hence we can exploit the
complete dataset. Nevertheless, the different correlation coefficients could also be obtained by restricting
the observations to a shorter specific of the year, and hence distinguishing between seasonal consumption
patterns. In this regard, the present approach can be considered as a joint measure that encompasses all
seasons.

The first step of our procedure is to obtain the hierarchical structures using the QC, AC and PAC
features and the complete linkage introduced in Section II. The usual way to represent these structures
is through dendrograms that, for reasons of space, we have omitted but are available upon request to
the authors. In the three graphs we have observed some clear groups of observations (time series) and
also observations that join the hierarchical structure at large levels. Those observations have a dynamic
“atypical” behavior and are grouped in clusters with less than 1% of the total number of time series.
Once we discard the atypical observations, we find eight, six and seven large clusters for QC, AC and
PAC, respectively. Moreover, the degrees of coincidence among these three clusters partitions are low as
indicated by the adjusted Rand indexes (0.0941 when comparing QC and AC; 0.1432 when comparing
QC and PAC and 0.2687 when comparing AC and PAC). This implies that the three approaches look at
different characteristics of the time series.

Figures 1 - 3 illustrate these large clusters obtained with QC, AC and PAC, respectively. In the figures,
we represent the mean of the features used to obtain the clusters. There are nine features, in the case
of QC, corresponding to the covariance of quantiles 10%, 50% and 90%, i.e., (0.1 versus 0.1), (0.1
versus 0.5), . . . , (0.9 versus 0.9). In the case of AC and PAC, we use the first 96 simple and partial
autocorrelations, respectively. The clusters based on QC reveals differences in the median consumptions
(.5 versus .5) and highest versus median consumptions (.9 versus .5). For instance, there is a remarkable
difference between c3QC and c7QC versus c1QC , c2QC , c4QC , c6QC and c8QC at the median consumptions (.5
versus .5). The c3QC and c7QC have negative covariances and the c1QC , c2QC , c4QC , c6QC and c8QC have positive
ones. That is, in the first group, a consumption below the median tends to be followed by consumption
above the median, while the second group tends to maintain their consumption below the median. The
groups by SAC and PAC show differences in the short-range dependencies but also in the way they are
around the lag 48 (one day). We can focus on the first correlations coefficients that show different degrees
of persistency in the consumptions. For instance, in the AC clusters, there is a clear order from high
dependency at c4AC , c1AC and c2AC , medium at c3AC and c5AC and to low dependency at c6AC . At the PAC
clusters, we can differentiate between clusters with negative second partial autocorrelation (c1PAC , c2PAC
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Figure 1. Main clusters obtained with QC and complete linkage.
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Figure 2. Main clusters obtained with AC and complete linkage.

and c6PAC), medium (c3PAC , c4PAC , and c5PAC) and high positive (c7PAC). That is, once we eliminate the first
order correlation, there are negative (or positive) direct effects on the consumption at the two-step ahead
period.

To perform a cluster evaluation, in Table I, we report the two internal validity criteria suggested by
[41], the cophenetic correlation coefficient (CCC) which allows us to evaluate the hierarchy of clustering
schemes and the normalized Γ statistic (NGS) which allows to evaluate the degree of agreement between a
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Figure 3. Main clusters obtained with PAC and complete linkage.

QAC solution SAC solution PAC solution
CCC .669 .435 .517
NΓS .737 .713 .722
1-NN .024 .120 .121

Table I
VALIDITY METRICS FOR THE FORMED CLUSTERS

given clustering solution and the distance or dissimilarity matrix. Both measures are correlation coefficients
having values in (-1,1), the closer the value to one the better the clustering solutions. Additionally, we
perform a leave-one-out cross-validation procedure with one-nearest neighbor classifier (see, for instance,
[42])1. We also report the miss-classification rates (1-NN) of this procedure at the table. The lower the
rates, the better the clustering solutions. These values support the conclusion that the cluster solutions we
have obtained are satisfactory representation of the underlying grouping structure.

Moreover, we compare our clustering solutions with the ones obtained with some state-of-the-art
techniques such k-means and partition around medoids (PAM). For both methods, we select the same
number of clusters than in our methods and we use 100 random initializations. In Table II, we report the
Rand index between our solutions and the k-means and PAM’s solutions. Also, we report the Rand index
versus the crisp solution obtained with the fuzzy c-means clustering (FCMC), that is the observation is
assigned to the cluster with highest degree of membership. These values support the conclusion that the
cluster solutions we have obtained are similar to the ones obtained with other methods using the same
features and number of clusters.

Of course, other meaningful cluster solutions can be found with different features and/or with different
number of clusters. In this regard, we have opted to select, depending on the particular methodology,
numbers of clusters that vary between 6 and 8. This is because we believe that this (or a comparable)
range of values is particularly interesting in many smart grid applications. For instance, in the contest

1It should be noted that the 1-nn procedure looks for the nearest neighbor which would correspond to the single linkage in the hierarchical
cluster and we are using the complete linkage.
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QAC solution SAC solution PAC solution
k-means .791 .781 .745

PAM .789 .754 .748
FCMC .773 .773 .746

Table II
COMPARISON WITH OTHER CLUSTERING TECHNIQUES: RAND INDEX

Predictor Importance Estimates
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Figure 4. Predictor importance estimates for clusters based on QC.

of customer segmentation, energy retailers may use these clusters to improve their business decision
making by offering personalized electricity price tariffs (see [5]). Hence, it is reasonable to assume that
the total number of offered tariffs (one per cluster) will not be too small, to effectively discriminate among
consumers, but not too large, to not over-complicate the business model.

Figures 4 - 6 provide the estimates of the predictor importance. It is clear that all features are relevant
in the clustering based on QC but we can select the features in the clusters based on AC and PAC. In
particular, for AC, the first fifteen lags and the four lags around the 48–lag appear to be relevant and, for
PAC, the first four lags and the four lags before and two lags after the 48– and 96–lags as well as those
daily “seasonal” lags. It is interesting to notice that the 48–lag is not relevant in the AC but this is due to
the (daily) seasonal difference. However, there are still stationary seasonal behavior as reflected by relevant
predictors/lags around the 48–lag. For PAC, the daily lags are highly relevant. The misclassification rates
estimated by cross–validation for the three trained decision trees were 9.9%, 23.3% and 21.4% when
using QC, AC and PAC, respectively. These low rates indicate that the errors are far from those obtained
from a random classification procedure. This points out that the obtained trees are good approximations
to the clustering mechanism. Of course, other supervised classification procedures such as random forest
or neural networks can be used in order to obtain better approximations. However, this is not the purpose
of this work as we rather aim to obtain an assessment of the importance of the features that have been
used to obtain the unsupervised classification.

Tables III - V show the number of households on each cluster that are classified in the three ACORN
GROUPED categories (with three possible values, adversity, comfortable and affluent). Note that they are
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Figure 5. Predictor importance estimates for clusters based on AC.
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Figure 6. Predictor importance estimates for clusters based on PAC.



12

Cluster Adversity Comfortable Affluent
c1QC 24 24 44

c2QC 293 278 360

c3QC 42 23 36

c4QC 52 40 37

c5QC 28 22 55

c6QC 482 343 358

c7QC 18 9 16

c8QC 146 160 258
Table III

CLUSTERS BY QC VERSUS ACORN GROUPED

Cluster Adversity Comfortable Affluent
c1AC 70 83 161
c2AC 426 404 544
c3AC 252 171 179
c4AC 16 23 59
c5AC 120 79 99
c6AC 214 140 120

Table IV
CLUSTERS BY AC VERSUS ACORN GROUPED

unevenly distributed across clusters. Indeed, we have performed chi-squared tests in those tables and the
results are highly significant in the three cases revealing that clustering is related to ACORN GROUPED
classification. We should point out that we do not intent to validate our cluster solutions with this analysis,
but rather show that the cluster solutions and the demographic category are statistically related (using a
chi-square test). In other words, the proposed clustering methodology is able to, up to some representative
extend, provide insights on the geo-demographic characteristics of a household (Acorn groups), just by
studying the time series dependencies.

Figures 7 - 9 show the prototype’s half-hourly profile for each cluster. For clarity we represent only
the medoid of each cluster, that is, the half-hourly profile for the element (smart meter) in the cluster

Cluster Adversity Comfortable Affluent
c1PAC 27 16 61
c2PAC 66 67 111
c3PAC 397 376 501
c4PAC 454 305 261
c5PAC 39 51 129
c6PAC 83 54 68
c7PAC 18 29 39

Table V
CLUSTERS BY PAC VERSUS ACORN GROUPED
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with minimal average dissimilarity to all objects in that cluster. We can observe different characteristic
consumption patterns associated to different types of consumers. For instance, the eight clusters obtained
with QC and complete linkage in Figure 7 allow distinguishing between consumers with morning (clusters
c3QC , c6QC and c7QC) and evening (clusters c1QC , c2QC , c5QC and c8QC) peak loads, and those with a more
constant consumption pattern (cluster c4QC). This is also appreciated in the 6 clusters obtained with AC
and complete linkage in Figure 8. In this case, clusters c1AC and c4AC capture those consumers with two
intermediate peak loads in the morning and in the evening. Cluster c5AC represents consumers with a single
peak consumption in the afternoon, and clusters c2AC , c3AC and c5AC , present consumers with less volatility.

Similarly, Figure 9 shows the clusters obtained with PAC and complete linkage. Clusters c1PAC , c2PAC
and c5PAC characterize consumers with a steady increasing load that reach its maximum at midnight, while
clusters c3PAC , c4PAC , c6PAC and c7PAC , represent consumers with two intermediate peaks in the morning and
evening. In this case clusters from each type are mainly differentiated by the average load consumption
levels.

We can also compare the main differences between the clusters obtained by QC, AC and PAC, in
terms of the profiles of their bigger clusters (those that include more than 1000 smart meters). These are
cluster 6 (c6QC) for QC (1183 smart meters), cluster 2 (c2AC) for AC (1374 smart meters), and clusters
3 (c3PAC) and 4 (c4PAC) for PAC (1274 and 1020 smart meters, respectively). In particular c6QC (Figure
7) includes consumers with a potential high load consumption during the mornings, and a second softer
(and less volatile) peak consumption during the night. On the contrary, c2AC (Figure 8) and c3PAC (Figure
9) characterize consumers with low consumption during the morning and a single peak during the night,
while c4PAC includes those with a more stable load profile.

IV. CONCLUSIONS

In this work we have presented three different hierarchical-based clustering strategies based on a set
“dissimilarity” measures computed over: quantile auto-covariances, and simple and partial autocorrelations.
The main advantage of this approach is that we can summarize each series in only a set of representative
features which makes them very easy to implement (highly efficient), easy to automatize and scalable
to hundreds of thousands of series, i.e., valid for real-world applications with large datasets of time
series, as the ones obtained from smart meters. We evaluate the performance of these clustering models
with thousands of electricity consumption time series. The results are promising: we are able to obtain
highly representative clusters capturing different electricity load consumption patterns and identifying the
level of influence of each of the models’ features. Moreover, we have seen how the proposed clustering
scheme can provide meaningful insights on the geo-demographic level of a household (Acorn groups),
just by analyzing its time series dependencies (autocorrelations). Future lines of work would explore if
these clustering strategies could be useful in the design of forecasting procedures for aggregated and
disaggregated smart meters time series.
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