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Abstract Rising sea levels are of great concern to coastal communities around
the world and studies have been undetaken by relevant authorities in various
countries to assess the impact of rising sea levels. Identifying areas with similar sea
levels could contribute useful information to authorities to help develop common
strategies to address rising sea levels that might occur in these areas, rather than
having them focus on each coastal area, individually. To this end, fuzzy clustering
combined with extreme value analysis is applied to sea-level time series gathered
from a number of tide gauges around the coast of Australia. Input features into
the fuzzy clustering methods are parameter estimates of location, scale and shape
obtained from fitting the generalised extreme value (GEV) distribution to block
maxima of the time series. New generalised procedures for fuzzy clustering taking
into account weights are developed, and iterative solutions based on the GEV
parameter estimators are obtained. Simulation studies conducted to evaluate the
methods, reveal fairly good performance, while outcomes from the application can
be meaningfully interpreted and are well validated.

Keywords Fuzzy Clustering · Block Maxima · Generalised Extreme Value
Distribution

1 Introduction

Extreme value analysis of seasonal time series such as that of temperatures and
sea levels is of much relevance to research in areas such as climatology, oceanogra-
phy, environmental science and engineering. In particular, the analysis of extreme
sea levels could be useful for planning long-term coastal protection and develop-
ment. Even if long-term sea-level records are not available, long-term projections
of extremes resulting from extreme value analysis of shorter-term data may ac-
ceptable from an enginnering perpective in terms of designing, say for example,
sea-protection walls on particular coastal areas.

Authors such as Tsimpis and Blackman [20], Unikrishnan et al. [21], Méndez
et al. [14] and Scotto et al. [18] have used extreme value analysis to study sea level
extremes, while Scotto et al. [19] and Alonso et al. [1] are amongst others who
have applied extreme analysis to temperature extremes. In particular, Scotto et
al. [18] combined a Bayesian analysis of extreme sea levels to estimate predictive
distributions with hierarchical cluster analysis to distinguish groups of North At-
lantic sea locations. Scotto et al. [19] applied the same methodology to European
daily temperature series to group together similar locations, while Alonso et al. [1]
compared Generalised Pareto models fitted to extreme temperature observations.
These above-mentioned studies focussed on using clustering methods to group to-
gether locations based on predictive distributions while in a recent study, Maharaj
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et al. [11] considered non-hierarchical clustering methods and classifications meth-
ods to group together seasonal time series across the available record and in an
application to regional temperature time series revealed realistic groupings. Given
that the dynamics of a time series may change over time, a time series might dis-
play patterns that may enable it to belong to one cluster over one period while over
another period, its pattern may be more consistent with those in another cluster.
The traditional clustering (crisp clustering) procedures are unable to identify the
changing patterns in a time. However clustering based on fuzzy logic will be able to
detect the switching patterns from one time period to another thus enabling some
time series to simultaneously belong to more than one cluster. Here, we extend the
study of Maharaj et al. [11] to group the series across the available record using
fuzzy clustering methods.

In this study, we simulate seasonal times series analogous to sea levels and we
obtain maxima of blocks of observations. To each series of block maxima, we fit a
generalised extreme value (GEV) distribution, estimate the parameters of shape,
location and scale, and use these parameters as features for fuzzy clustering of
the series. The methods considered are fuzzy c-means, weighted fuzzy c-means,
fuzzy c-medoids and weighted fuzzy c-medoids. New generalised procedures for
fuzzy clustering taking into account weights are developed, and iterative solutions
based on the GEV parameter estimators are obtained. We then apply these fuzzy
clustering methods to the sea level time series.

In Section 2, we provide a brief description of the generalised extreme value dis-
tribution while in Section 3 we describe the fuzzy clustering methods and provide
iterative solutions when the estimated GEV parameters are used as features. In
Sections 4 and 5, we describe and analyse the simulation study and the application,
respectively.

2 Methods

2.1 Generalised Extreme Value Distribution

The generalised extreme value (GEV) distribution is a family of continuous proba-
bility distributions developed within extreme value theory to combine the Gumbel,
Fréchet and Weibull families also known as Type I, II and III extreme value dis-
tributions. As a result of the extreme value theorem, the GEV distribution is the
limiting distribution of normalised maxima of a sequence of independent and iden-
tically distributed random variables. Hence, the GEV distribution is used as an
approximation to model the maxima of long finite sequences of random variables.
The GEV distribution has the following form:

G(x) = exp

{
−
[
1 + ξ

(
X − µ
σ

)]− 1
ξ

}
(1)

defined on {x : 1 + ξ(x−µσ ) > 0} where −∞ < µ < ∞, σ > 0, and −∞ < ξ < ∞,
The three parameters µ, σ and ξ are the location, scale and shape parameters,
respectively. The shape parameter determines the three extreme value types. When
ξ < 0, ξ > 0 or ξ = 0 , the GEV distribution is the negative Weibull, the Fréchet
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or the Gumbel distribution, respectively. This is assumed to be the case by taking
the limit of Eq.1 as ξ → 0.

For m years, the log-likelihood function for the annual maxima is given by

`(µ, σ, ξ) = −m log(σ)−(1+1/ξ)

m∑
i=1

log
[
1 + ξ

(
xi − µ
σ

)]
−

m∑
i=1

[
1 + ξ

(
xi − µ
σ

)]−1/ξ

,

(2)
provide 1 + ξ

(
xi−µ
σ

)
> 0 for i = 1, 2, . . . ,m. Eq. 2 is valid for ξ 6= 0 . For ξ = 0,

the log-likelihood function for the annual maxima is given by

`(µ, σ) = −m log(σ)−
m∑
i=1

(
xi − µ
σ

)
−

m∑
i=1

exp
[
−
(
xi − µ
σ

)]
. (3)

The above log-likelihood expression creates a common difficulty in extreme
value analysis, the number of extreme events is small. This is particularly severe
when the method of maxima over fixed intervals is used. As mentioned in Coles
[3], a possible solution is to consider the r-largest values over fixed intervals. For
m years, the log-likelihood function for the annual r-largest values is given by

`(µ, σ, ξ) = −mr log(σ)− (1 + 1/ξ)
m∑
i=1

∑r
k=1 log

[
1 + ξ

(
x
(k)

i
−µ
σ

)]
−

m∑
i=1

[
1 + ξ

(
x
(r)

i
−µ
σ

)]−1/ξ , (4)

where x
(r)
i ≤ x

(r−1)
i ≤ . . . ≤ x

(1)
i are the r-largest values of the i-th year and

the x
(k)
i satisfy the following restriction 1 + ξ

(
x
(k)

i
−µ
σ

)
> 0 for i = 1, 2, . . . ,m

and k = 1, 2, . . . , r. For ξ = 0. the log-likelihood function for the annual r-largest
values is given by

`(µ, σ) = −m log(σ)−
m∑
i=1

r∑
k=1

(
x
(k)
i − µ
σ

)
−

m∑
i=1

exp

[
−

(
x
(r)
i − µ
σ

)]
. (5)

The number of largest values per year, r, should be chosen carefully since small
values of it will produce likelihood estimators with high variance, whereas large
values of r will produce biased estimates. In practice, r is selected as large as
possible subject to adequate model diagnostics. The validity of the models can be
checked through the application of graphical methods, in particular, the probabil-
ity plot, the quantile plot and the return level plot; for further details, see Reiss
and Thomas [16] and references therein.

The implications of a fitted extreme value model are usually made with ref-
erence to extreme quantiles. By inversion of the GEV distribution function, the
quantile, xp, for a specified exceedance probability p is

xp = µ− σ

ξ

[
1− (− log(1− p)−ξ)

]
for ξ 6= 0, (6)

and
xp = µ− σ log[− log(1− p)] for ξ = 0. (7)
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xp is referred to the return level associated with a return period 1/p. It is expected
to be exceeded by the annual maximum in any particular year with probability p.

While in most applications of extreme value theory, attention is focussed on
the extreme quantiles of the GEV distribution, our focus is on fitting GEV distri-
butions to the block maxima of seasonal times series, estimating the parameters
and using these parameters as the features for fuzzy clustering .

2.2 Fuzzy Clustering Models

While the traditional non-hierarchial clustering methods such as k -means and k -
medoids generate mutually exclusive clusters, a fuzzy clustering method allows
an observation to belong to more than one cluster simultaneously based on the
minimisation of an objective function. Each observation belonging to a particular
cluster has a membership degree which lies between 0 and 1. The k -means and k -
medoids methods which are referred to as crisp clustering methods can be regarded
as special cases of the fuzzy c-means and fuzzy c-medoids methods, respectively,
where the membership degree of an observation belonging to a cluster is 1 and
that of an observation not belonging to a cluster is 0.

In the literature, several authors have given different reasons for adopting fuzzy
clustering approach (D’Urso [6]). As remarked by Hwang et al. [9], the fuzzy
clustering approach offers other major advantages over the traditional clustering
approach. Firstly, the fuzzy clustering models are computationally more efficient
because dramatic changes in the value of cluster membership are less likely to occur
in estimation procedures (McBratney and Moore, [13]. Secondly, fuzzy clustering
has been shown to be less affected by local optima problems (Heiser and Groenen,
[8]). Finally, the memberships for any given set of observations indicate whether
there is a second-best cluster almost as good as the best cluster; a result which
traditional clustering methods cannot uncover (Everitt et al. [7]).

We also consider weighted fuzzy c-means and weighted fuzzy c-medoids mod-
els of which the non-weighted fuzzy c-means and non-weighted fuzzy c-medoids
models are special cases, respectively. In what follows, we describe the weighted
fuzzy models and develop iterative solutions when the GEV estimates are used as
the clustering features.

In the weighted versions of the fuzzy clustering models, the weights could
be fixed subjectively, a priori, by considering external or subjective conditions
they or could be computed objectively within a suitable clustering procedure. In
particular, we can adopt either:

– an internal weighting system using an objective criterion where the weight
values are not fixed a priori, but are computed via the minimization algorithm;
we get suitable weights such that the loss function is minimized with respect
to the optimal values of the weights (refer to the iterative solutions that follow.

– an external weighting system where the weights can be fixed subjectively a
priori, by taking into account external conditions.
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2.2.1 Weighted fuzzy c-means clustering model based on GEV parameters of
location, shape and scale (WGEV–FcM model)

The WGEV–FcM model is formalized as follow:

min :

I∑
i=1

C∑
c=1

umic d̃
2
ic =

I∑
i=1

C∑
c=1

umic

3∑
s=1

(ws ·dics)2 =

I∑
i=1

C∑
c=1

umic

3∑
s=1

[ws · (xis−hcs)]2

(8)
subject to the constraints

C∑
c=1

uic = 1, uic ≥ 0, (9)

3∑
s=1

ws = 1, ws ≥ 0 (10)

where uic indicates the membership degree of the i-th time series to the c-th clus-
ter; m > 1 is a weighting exponent that controls the fuzziness of the obtained
partitions; d̃2ic =

∑3
s=1(ws ·dics)2 =

∑3
s=1[ws · (xis−hcs)]2 = [w1 · (xi1−hc1)]2 +

[ws · (xi2−hc2)]2 +[w3 · (xi3−hc3)]2 represents the “weighted” Euclidean distance
between the i-time series and the c-th prototype (centroid) time series based on the
three parameters of the Generalized Extreme Value (GEV) distribution in which
xi1 ∈ (−∞,+∞), xi2 ∈ (−∞,+∞), xi3 ∈ [0,+∞) represent, respectively, the
observed shape, location and scale parameters of the Generalized Extreme Value
(GEV) distribution; hc1 ∈ (−∞,+∞), hc2 ∈ (−∞,+∞), hc3 ∈ [0,+∞) indicate,
respectively, the prototype (centroid) location, shape and scale parameters of the
GEV distribution and w1, w2 and w3 are suitable weights associated with each
parameter of the GEV distribution.

Proposition 1
The iterative solutions to Eq. 8–10 are:

uic =
1

C∑
c′=1


3∑
s=1

(ws·dics)2

3∑
s=1

(ws·dic′s)2


1

m−1

, ws =
1

3∑
s′=1


I∑
i=1

C∑
c=1

(um
ic
·d2
ics

)

I∑
i=1

C∑
c=1

(um
ic
·d2
ics′

)


, hcs =

I∑
i=1

umicxis

I∑
i=1

umic

.

(11)

Proof of Preposition 1
First, fix hcs and ws, to determine the membership degrees uic. The solution
of Eq. 8–10 is found by means of Lagrange multipliers. Thus, we consider the
following Lagrangian function:

Lm(ui, λ) =

C∑
c=1

umic

3∑
s=1

(ws · dics)2 − λ

(
C∑
c=1

uic − 1

)
(12)
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where ui = (ui1, . . . , uic, . . . , uiC)′ and λ is the Lagrange multiplier. Therefore,
setting the first derivatives with respect to uic and λ equal to zero, yields

∂Lm(ui, λ)

∂ui′c′
= 0 ⇔ m · um−1

i′c′

3∑
s=1

(ws · di′c′s)2 − λ = 0 (13)

∂Lm(ui, λ)

∂λ
= 0 ⇔

C∑
c=1

uic − 1 = 0 (14)

From Eq. 13 and by considering Eq. 14 we obtain uic. Now, fixing uic and hcs, we
calculate the weights ws. By considering the Lagrangian function:

Lm(w, ξ) =

I∑
i=1

C∑
c=1

umic

3∑
s=1

(ws · dics)2 − ξ

(
3∑
s=1

ws − 1

)
(15)

where u = (w1, w2, w3)′ and ξ is the Lagrange multiplier; by setting the first
derivatives with respect to ws′ and ξ equal to zero, we obtain:

∂Lm(w, ξ)

∂ws′
= 0 ⇔ 2 · ws′

I∑
i=1

C∑
c=1

umic · d2ics′ − ξ = 0 (16)

∂Lm(w, ξ)

∂ξ
= 0 ⇔

3∑
s=1

ws − 1 = 0 (17)

From Eq. 16 we have:

ws′ =
ξ

2
I∑
i=1

C∑
c=1

umic · d2ics′
(18)

and using Eq. 17:

ξ

2
=

1

3∑
s′′=1

 1
I∑
i=1

C∑
c=1

um
ic
·d2
ics′′


. (19)

Then, replacing ξ in Eq. 18 by ξ from Eq. 19, by we obtain ws.
For computing hcs, we have to solve an unconstrained minimisation problem. In
particular, since

min

I∑
i=1

C∑
c=1

umic

3∑
s=1

(ws · dics)2 =

C∑
c=1

3∑
s=1

w2
s

[
min

I∑
i=1

umic(xis − hcs)2
]

we have, putting Vm(hcs) =
∑I
i=1 u

m
ic(xis − hcs)2, the solution hcs, setting the

first derivatives of Vm(hcs) with respect to hcs equal to zero.

Remark 1
Notice that the weight ws is intrinsically associated with the distance dics for
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the GEV parameter s, while the overall dissimilarity is just a sum of the squares
of these weighted distances. This allows us to appropriately tune the influence
of the different GEV parameters when computing the dissimilarity between time
series. Looking at the solution in Eq.11, we observe that the weights ws (s=1,2,3)
have a statistical meaning. In fact, they appear to mirror the heterogeneity of
the total intra-cluster deviances, i.e.,

∑I
i=1

∑C
c=1 u

m
icd

2
ic across the different GEV

parameters. In particular, weight ws increases as long as the total intra-cluster
deviance for the s − th GEV parameter decreases (compared with the remaining
GEV parameters). Thus, the optimization procedure tends to place more emphasis
to the GEV parameters that are capable of increasing the within cluster similarity
among the time series.

2.2.2 Fuzzy c-means clustering model based on GEV parameters (GEV-FcM)

By assuming the weights are determined a priori and fixing ws = 1 for s=1, 2,
3 in Eq. 8, we obtain the un-weighted version of WGEV–FcM model, i.e., the
GEV–FcM model:

min

I∑
i=1

C∑
c=1

umic

3∑
s=1

(xis − hcs)2

subject to the constraints
C∑
c=1

uic = 1, uic ≥ 0.

2.2.3 Weighted fuzzy c-medoids clustering model based on location, shape and
scale parameters (WGEV–FcMd model)

By applying the WGEV–FcM model we simultaneously obtain fuzzy partitions
of a set of time series (by means of the corresponding three parameters of the
GEV distribution) and estimate the prototype time series (prototypes of the three
parameters of the GEV distribution), i.e. centroid time series (centroid parameters
of the GEV distribution) that synthetically represent the features of the time series
belonging to the corresponding clusters. However, there are several real cases where
it is more realistic to represent/synthesize the cluster with a prototype time series
belonging to the set of the observed time series, the so-called medoid time series.
Then in our case, since the time series are represented by means of the three
parameters of the respective GEV distributions, each cluster is represented by the
medoid parameters of the GEV distribution. Then, we can formalize the so-called
WGEV–FcMd model as follows:

min :

I∑
i=1

C∑
c=1

umic d̃
2
ic =

I∑
i=1

C∑
c=1

umic

3∑
s=1

(ws ·dics)2 =

I∑
i=1

C∑
c=1

umic

3∑
s=1

[ws · (xis− x̃cs)]2

(20)



8

C∑
c=1

uic = 1, uic ≥ 0, (21)

3∑
s=1

ws = 1, ws ≥ 0 (22)

where uic indicates the membership degree of the i-th time series to the c-th clus-
ter; m > 1 is a weighting exponent that controls the fuzziness of the obtained parti-
tion; d̃2ic =

∑3
s=1[ws ·(xis−x̃cs)]2 = [w1 ·(xi1x̃c1)]2+[w2 ·(xi2x̃c2)]2+[w3 ·(xi3x̃c3)]2

represents the “weighted” Euclidean distance between the i-time series and the c-
th medoid time series based on the three parameters of the GEV distribution in
which x̃c1, x̃c2, x̃c3 indicate, respectively, the medoid location, shape and scale
parameters of the GEV distribution and w1, w2 and w3 suitable weights associate
to each parameter of the GEV distribution.

The membership degrees and the weights can be calculate in a heuristic man-
ner in many different ways. For instance, we can adopt the membership degrees
obtained by means of the WGEV-FcM model:

uic =
1

C∑
c′=1


3∑
s=1

(ws·dics)2

3∑
s=1

(ws·dic′s)2


1

m−1

, ws =
1

3∑
s′=1


I∑
i=1

C∑
c=1

um
ic
·d2
ics

I∑
i=1

C∑
c=1

um
ic
·d2
ics′


. (23)

Notice that the objective function in Eq. 20 cannot be minimized by means of
the alternating optimization algorithm, because the necessary conditions cannot
be derived by differentiating it with respect to the medoids. Nonetheless, follow-
ing Fu’s heuristic algorithm a fuzzy clustering algorithm that minimizes objective
function in Eq. 20 can be built up (refer to Krishnapuram et al. [10]).

2.2.4 Fuzzy c-medoids clustering model based on GEV parameters (GEV-FcMd)

By assuming the weights are determined a priori and fixing ws = 1, s = 1, 2, 3
in Eq. 20, we obtain the un-weighted version of WGEV–FcMd model, i.e., the
GEV–FcMd model:

min :

I∑
i=1

C∑
c=1

umic

3∑
s=1

(xis − x̃cs)2

subject to the constraints
C∑
c=1

uic = 1, uic ≥ 0.

Remark 2
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– In our fuzzy clustering models, before computing the iterative solutions we
have to fix a suitable number of clusters C. In the body of literature, many
cluster-validity criteria have been suggested (D’Urso [6]). We use the fuzzy
silhouette criterion (Campello and Hruschka [4]).

– In our fuzzy clustering models, the fuzziness parameter m plays an important
role. The value of m should be chosen in advance. Different heuristic strategies
are recommended in the literature. See D’Urso [6] for a detailed discussion.

– The k -means and k -medoids methods are special cases of the fuzzy c-means
and fuzzy c-medoids methods, respectively, when m, which controls the degree
of fuzziness is set to one.

– Similarly the weighted k -means and weighted k -medoids models are special
cases of the weighted fuzzy c-means and weighted fuzzy c-medoids models
respectively, when m is set to one.

3 Simulation Study

In this simulation study we will generate seasonal time series that could represent
daily temperatures or daily sea levels. We follow a similar procedure used in Ma-
haraj et al. [11] in that we use a dynamic factor model that has been proposed by
Safadi and Pena [17]. They used this model to generate air pollution series. The
model is of the form:

yt = Lft + et (24)

ft =

p∑
i=1

ρift−1 + wt (25)

where yt is a q × 1 vector of time series, L is a q × k matrix of factor loadings,
et ∼ N(0, Γ ), Γ is a q × q diagonal matrix. The factors ft are represented by
a k × 1 vector which follows a multivariate autoregressive model where the AR
matrices ρi are diagonal matrices with ρi= diag(ρi1, ρi2, · · · , ρik), i = 1, 2, · · · , p
and {ρ1j , ρ2j , · · · , ρpj , j = 1, 2, · · · , k satisfy the stationary conditions and wt ∼
N(0, Ik), where Ik is the identity matrix, and et and wt are independent for all t
and s.

In order to introduce seasonality to this dynamic factor model a harmonic
component is added to each factor in Eq. 25 as follows:

ft,k =

p∑
i=1

ρi,kft−1,k +Ak sin
(

2πt

s

)
+Bk cos

(
2πt

s

)
+ wt. (26)

where s is the length of the cycle. Ak = Rk cos θk and Bk = −Rk sin θk. For
each factor ft,k, Rk is the amplitude or height of the cycle peaks, θk is the phase
or the location of the peaks relative to time zero. Each factor can have different
autoregressive dynamics, different seasonal dynamics, i.e., different amplitudes and
phases.

We simulate three different scenarios with two groups of fives series each to
evaluate the clustering and classification methods when using the GEV parameters.
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– Scenario 1: Series with different amplitudes but with same phases.
– Scenario 2: Series with the same amplitudes but with different phases.
– Scenario 3: Series with different amplitudes and different phases.

For Scenario 1, we simulated five series with amplitude 10, and another five
with amplitude 20 . The phase for each of the ten series was set at 0.5 . This is
equivalent to a having a single common factor, ft,1, with R1 = 10, θ1 = 0.5, and
the factor loading matrix L being of dimension 10× 1, i.e.,

L =
[

1 1 1 1 1 2 2 2 2 2
]′
. (27)

For Scenario 2, we simulated five series with phase 0.5 and five series with
phase 1. The amplitude for each of the ten series was set at 10. This is equivalent
for having two common factors ft,1 and ft,2, with R1 = R2 = 10, θ1 = 0.5, θ2 =1,
and the factor loading matrix L being of dimension 10× 2, i.e.,

L =

[
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

]′
. (28)

Scenario 3 is also a two common factor situation, but in the case we set R1 =
10 and θ1 = 0.5 for the first set of five series, and R1 = 20 and θ1 = 1 for the
second set of five series. The factor loading matrix L is

L =

[
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 2 2 2 2 2

]′
. (29)

For all three scenarios, AR matrices from a vector autoregressive model of order
1, VAR(1), are used to generate the factors with ρ1 = [0.5] for the first scenario
and

ρ1 =

[
0.5 0
0 0.5

]
(30)

for both the second and third scenarios. For all three scenarios, the error series
were generated from a N(0, Γ ) process with Γ = I10, an identity matrix.

Figures 1 to 3 show sections of series of length T = 366 generated for each
scenario.

Daily-type series for 10 and 20 years were simulated for the three scenarios,
and GEV estimates of shape, location and scale were obtained for one and two
blocks per year, and were used as the fuzzy clustering features. The performance
of the fuzzy clustering methods were evaluated over 100 simulations and in all
cases m was set to 2. Note that Bezdek [2] showed that fuzzy c-means clustering
algorithm works well when 1.5 <m < 2.5. We determined the percentage of correct
classifications and whether they were fuzzy or not, based of a membership degrees
of between 0.5 and 0.7 for fuzziness. Refer to Maharaj et al. [12] for more details
on the cut-off value of 0.7 for non fuzzy classification.
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Fig. 1 Time Series with Different Amplitudes

0 100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20

30

Time in days

V
a

lu
e

s

 

 

Amplitude =10

Amplitude = 20

Fig. 2 Time Series with Different Phases
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Fig. 3 Time Series with Different Amplitudes and Phases
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Tables 1 and 2 show the results of the fuzzy clustering methods for daily-type
data over 10 and 20 years and for block sizes one and two, using the estimated
GEV parameters. For time series of both 10 and 20 years

– for the 1-block scenario, the weighted fuzzy methods outperform the un-weighted
methods when distinguishing between series of different amplitudes only, and
between series of both different amplitudes and phases; however for the dif-
ferent phase only scenario, it is clear that none of the methods are able to
distinguish between series of different phases.

– for the 2-block scenario, the fuzzy c-means method is the best performer fol-
lowed by the weighted fuzzy c-means method when distinguishing between
series of different amplitudes only; for the different phase only and for the dif-
ferent amplitude and phase scenarios, all methods perform to a high degree of
accuracy.

– for both the 1-block and 2-block scenarios, the fuzzy c-means method reveals
the highest proportion for fuzzy classification when distinguishing between
series of different amplitude only, and between series of both different amplitude
and phases.

Since the 2 blocks per year provide double the number of maxima, it is clear
that for the 2-block scenario, these methods perform well in distinguishing seasonal
patterns for all three scenarios regardless of the different series lengths under
consideration. The simulations were repeated, this time setting the exponent of
fuzziness, m to 1.8 and it was observed that similar results to those above were
obtained.

Table 1 Daily Time Series for 10 years: Percentage of Correct, Non-fuzzy and Fuzzy Classi-
fication using GEV Parameter Estimates

10 years, T=3660 1 block 2 blocks
correct non- fuzzy correct non- fuzzy

fuzzy fuzzy
different amplitudes
fuzzy c-means 0.54 0.10 0.44 0.99 0.42 0.57
weighted fuzzy c-means 0.96 0.96 0.00 0.87 0.81 0.06
fuzzy c-medoids 0.57 0.57 0.00 0.67 0.49 0.18
weighted fuzzy c-mediods 1.00 1.00 0.00 0.68 0.54 0.14
different phases
fuzzy c-means 0.00 0.00 0.00 1.00 0.98 0.02
weighted fuzzy c-means 0.00 0.00 0.00 0.97 0.93 0.04
fuzzy c-medoids 0.00 0.00 0.00 1.00 0.97 0.03
weighted fuzzy c-mediods 0.00 0.00 0.00 0.96 0.96 0.00
different amplitudes and phases
fuzzy c-means 0.57 0.14 0.43 1.00 0.89 0.11
weighted fuzzy c-means 0.92 0.92 0.00 1.00 1.00 0.00
fuzzy c-medoids 0.58 0.58 0.00 0.95 0.95 0.00
weighted fuzzy c-mediods 1.00 1.00 0.00 1.00 1.00 0.00

Figure 4 show boxplots of the GEV parameter estimates for one simulation
for the two groups of series with different amplitudes with one block per year
over 20 years. It is clear from this boxplot that the estimated location parameters
make a greater contribution to group separation than the the estimated shape and
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Table 2 Daily Time Series for 20 years: Percentage of Correct, Non-fuzzy and Fuzzy Classi-
fication using GEV Parameter Estimates

20 years, T=7320 1 block 2 blocks
correct non- fuzzy correct non- fuzzy

fuzzy fuzzy
different amplitudes
fuzzy c-means 0.83 0.30 0.53 0.94 0.33 0.61
weighted fuzzy c-means 0.97 0.97 0.00 0.70 0.62 0.08
fuzzy c-medoids 0.75 0.75 0.00 0.64 0.53 0.11
weighted fuzzy c-mediods 1.00 1.00 0.00 0.53 0.45 0.08
different phases
fuzzy c-means 0.00 0.00 0.00 1.00 0.97 0.03
weighted fuzzy c-means 0.00 0.00 0.00 1.00 1.00 0.00
fuzzy c-medoids 0.00 0.00 0.00 1.00 0.99 0.01
weighted fuzzy c-mediods 0.01 0.00 0.01 1.00 0.99 0.01
different amplitudes and phases
fuzzy c-means 0.85 0.35 0.50 1.00 0.99 0.01
weighted fuzzy c-means 0.99 0.99 0.00 1.00 1.00 0.00
fuzzy c-medoids 0.83 0.83 0.00 1.00 1.00 0.00
weighted fuzzy c-mediods 1.00 1.00 0.00 1.00 1.00 0.00

Fig. 4 Boxplot of GEV estimates for series with different amplitudes
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scale parameters. Similar observations were made when series of both different
amplitude and phases were generated.

4 Application

We consider time series of monthly sea levels collected at 39 different tide gauge
stations around the coast of Australia. These are available from the web site of
Permanent Service for Mean Sea Level (PSMSL) [15]. The PSMSL database con-
tains monthly and annual mean sea level measurements from almost 200 national
authorities from around the world, who are responsible for sea level monitoring
in each country or region. In order to construct sea level times series, the PSMSL
adjusts these measurements with reference to a common depth which is approxi-
mately 7000mm below mean sea level. Refer to PSMSL [15] for more details.
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These 39 series for the period January 1993 to December 2012 were considered
because they contained either no missing values or very few missing values. When
there were missing values, each was replaced by the mean of two values either
before or after it. In many cases, the series record before January 1993 contained
long tracks of missing values. Likewise, all the other Australian sea level time
series available on this web site contained long tracks of missing values or were
too short to enable a useful analysis. Table 3 lists the tide gauge stations, their
coastal directions, and the estimates obtained from fitting the GEV distribution
to the annual maxima of each of the series. The graphs of all these series can be
viewed at the PSMSL web site.

Table 3 Tide Gauge Sites and GEV Estimates

Coastal Direction Tide Gauge Site GEV Estimates
Location Scale Shape

NE Bowen 7193.84 46.78 -0.19
NE Brisbane 7357.39 49.14 -0.23
NW Broome 7129.95 66.11 -0.62
SW Bunbury 7038.35 62.33 -0.32
NE Bundaberg 6802.40 41.75 0.19
S Burnie 7105.04 37.17 -0.50
NE Cairns 7122.41 45.52 -0.49
NE Cape Ferguson 7334.36 49.72 -0.23
NW Carnarvon 7082.80 86.56 -0.20
N Darwin 7235.29 74.98 -0.36
SE Eden 7130.83 44.06 -0.19
SW Esperance 7199.57 57.24 -0.46
SW Freemantle 6947.01 60.70 -0.34
SW Geraldton 7163.99 72.73 -0.32
SE Gold Coast Seaway 7027.16 61.74 -0.36
N Haypoint 7056.43 50.35 -0.07
SW Hillarys 7160.54 71.01 -0.43
S Lorne 7212.14 43.15 -0.35
NE Mackay 7135.77 52.48 -0.26
SE Mooloolaba 7112.01 38.03 -0.32
NE Mourilyan Harbour 7149.35 52.15 -0.33
SE Newcastle 7134.05 50.58 -0.32
NW Onslow 7056.77 82.58 -0.30
S Port Adelaide 7092.52 138.68 -1.07
NE Port Alma 7206.96 45.19 0.14
SE Port Kembla 7188.27 42.47 -0.30
S Port Lincoln 7116.12 54.54 -0.25
S Port Pirie 7011.48 145.10 -1.00
S Portland 7173.34 43.94 -0.39
NE Rosslyn Bay 7245.28 46.52 -0.13
NE Shute Harbour 7139.77 43.19 -0.17
S Spring Bay 7228.43 40.46 -0.42
S Stony Point 7146.90 44.52 -0.44
SE Sydney 7097.65 42.90 -0.33
S Thevenard 7168.06 61.06 -0.32
NE Townsville 7075.55 48.42 -0.19
S Victor Harbour 7102.70 63.34 -0.24
N Weipa 7360.44 97.74 -0.33
N Wyndham 7107.10 110.91 -0.16
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Fig. 5 Monthly sea level series
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A report by the Australian Government’s Department of Climate Change in
2009 [5] provides findings of the first national assessment of the risks of climate
change on Australia’s coastal areas. In particular, the report discusses the possible
impact of rising sea levels on these coastal areas in the coming decades. The aim of
this application is to determine if the fuzzy clustering methods can group together
time series of similar sea levels in a meaningful way and if one or more series could
belong to more than one group. Identifying areas with similar sea levels in this
way could contribute useful information to authorities to help develop common
strategies to address rising sea levels that might occur in these areas, rather than
having them focus on each coastal area, individually. Hence, resources could be
used in an efficient manner to address concerns of future sea-level rises.

Figure 5 shows three typical sea level series, namely, from tide gauges located
near Fremantle, Sydney and Brisbane. Sydney is on the south east coast, Brisbane
is on the central to north east coast while Fremantle is on the south west coast.
The seasonal patterns in the series are apparent with the Brisbane series displaying
higher sea levels, the Fremantle series displaying lower sea levels, with the Sydney
series displaying sea levels between that of the other two sites. The Brisbane and
Fremantle series each display a gentle slope. It should be note that the GEV dis-
tribution should be fitted to maxima that are stationary. In some cases, the series
under consideration do display gentle slopes in the series of maxima. However,
we proceeded with fitting the GEV distributions to the series of maxima without
incorporating the slopes because none were steep enough to warrant incorporating
a trend factor in the models. Furthermore, the series of maxima are too short (20
years) to identify whether any trend if it does exist, is linear or nonlinear. Fig-
ure 6 shows the values above the 95% percentile of each of these series, where the
differences in the sea levels of these three series is clearly apparent.

We first applied the fuzzy c-means method to the GEV estimates to determine
the appropriate number of clusters from the fuzzy silhouette coefficients. It was
found that a 3 or 4 cluster solution appeared to be appropriate when m was set
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Fig. 6 Box-plot of the exceedances above the 95% percentile
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to 2 or 1.8. Note that 1.5 < m < 2.5 is an acceptable range for producing fuzzy
clusters (Bezdek [2]). Table 4 shows the membership degrees for the 3-cluster fuzzy
c-means solution for m = 2 and the equivalent hard cluster membership. A time
series belongs to a particular hard cluster if its membership degrees is the highest
for that cluster.

We can also graphically represent the membership degrees associated with
each of the series by mean of a ternary plot which is a barycentric plot on three
variables which sum to a constant (usually, this constant is represented as 1.0 or
100%). The plot graphically depicts the ratios of the three variables as positions
in an equilateral triangle. In particular, in our case, Figure 7 depicts the ternary
plot, a simple representation of the clusters based on membership degrees that
summarises the partition structure reported in Table 4. In particular, the ternary
plot clearly highlights the behaviour of the time series with fuzzy and non fuzzy
membership.

From Table 4, it is clear that the two series in Cluster 2 have scale estimates
that are very much larger that that those of all the other series, and shape estimates
that are less than or approximately equal to -1. All the other series have shape
estimates greater than -1. Hence, it appears that this cluster is based on the
similarity of shape and scales estimates. The two series in Cluster 2 have almost
crisp membership in this cluster and are represented by overlapping dots at the
apex of the triangle in the ternary plot in Figure 7. Standardised location estimates
(given in Column 4 of the table) were examined in order to search for patterns
within the clusters associated with mean sea levels.

It can be observed from Table 5 which shows the mean, maximum and min-
imum location values for each of the clusters, the mean location of Cluster 1 is
greater than that of other clusters and it has the highest maximum and minimum
location values. Furthermore, examination of the standardised location values re-
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Table 4 3-Cluster Solution

Coastal Tide Gauge GEV Estimates Hard
Direction Station Location Std Loc Shape Scale Membership Degrees Cluster
NE Bowen 7193.84 0.55 46.78 -0.19 0.80 0.01 0.19 1
NE Brisbane 7357.39 2.13 49.14 -0.23 0.66 0.06 0.28 1
NW Broome 7129.95 -0.07 66.11 -0.62 0.49 0.10 0.41 1
S Burnie 7105.04 -0.31 37.17 -0.50 0.53 0.04 0.43 1
NE Cairns 7122.41 -0.14 45.52 -0.49 0.58 0.03 0.39 1
NE Cape Ferguson 7334.36 1.91 49.72 -0.23 0.68 0.05 0.27 1
N Darwin 7235.29 0.95 74.98 -0.36 0.67 0.04 0.29 1
SW Esperance 7199.57 0.61 57.24 -0.46 0.79 0.02 0.19 1
SW Geraldton 7163.99 0.26 72.73 -0.32 0.54 0.02 0.44 1
SW Hillarys 7160.54 0.23 71.01 -0.43 0.57 0.04 0.39 1
S Lorne 7212.14 0.73 43.15 -0.35 0.90 0.01 0.10 1
NE Mackay 7135.77 -0.01 52.48 -0.26 0.49 0.01 0.50 1
SE Mooloolaba 7112.01 -0.24 38.03 -0.32 0.51 0.02 0.47 1
NE Mourilyan Harbour 7149.35 0.12 52.15 -0.33 0.81 0.00 0.18 1
SE Newcastle 7134.05 -0.03 50.58 -0.32 0.62 0.01 0.37 1
NE Port Alma 7206.96 0.68 45.19 0.14 0.50 0.05 0.45 1
SE Port Kembla 7188.27 0.50 42.47 -0.30 0.90 0.01 0.09 1
S Portland 7173.34 0.35 43.94 -0.39 0.86 0.01 0.13 1
NE Rosslyn Bay 7245.28 1.05 46.52 -0.13 0.71 0.02 0.26 1
NE Shute Harbour 7139.77 0.03 43.19 -0.17 0.52 0.01 0.46 1
S Spring Bay 7228.43 0.88 40.46 -0.42 0.82 0.02 0.16 1
S Stony Point 7146.90 0.09 44.52 -0.44 0.71 0.02 0.27 1
S Thevenard 7168.06 0.30 61.06 -0.32 0.81 0.01 0.19 1
N Weipa 7360.44 2.16 97.74 -0.33 0.51 0.16 0.34 1
S Port Adelaide 7092.52 -0.43 138.68 -1.07 0.01 0.98 0.01 2
S Port Pirie 7011.48 -1.22 145.10 -1.00 0.01 0.98 0.01 2
SW Bunbury 7038.35 -0.96 62.33 -0.32 0.13 0.02 0.85 3
NE Bundaberg 6802.40 -3.24 41.75 0.19 0.34 0.13 0.53 3
NW Carnarvon 7082.80 -0.53 86.56 -0.20 0.27 0.05 0.68 3
SE Eden 7130.83 -0.06 44.06 -0.19 0.47 0.01 0.51 3
SW Freemantle 6947.01 -1.84 60.70 -0.34 0.25 0.07 0.68 3
SE Gold Coast Seaway 7027.16 -1.07 61.74 -0.36 0.18 0.03 0.79 3
N Haypoint 7056.43 -0.78 50.35 -0.07 0.24 0.02 0.73 3
NW Onslow 7056.77 -0.78 82.58 -0.30 0.23 0.05 0.72 3
S Port Lincoln 7116.12 -0.20 54.54 -0.25 0.17 0.00 0.82 3
SE Sydney 7097.65 -0.38 42.90 -0.33 0.39 0.01 0.60 3
NE Townsville 7075.55 -0.60 48.42 -0.19 0.17 0.01 0.82 3
S Victor Harbour 7102.70 -0.33 63.34 -0.24 0.05 0.00 0.95 3
N Wyndham 7107.10 -0.29 110.91 -0.16 0.34 0.15 0.51 3

veal that most are greater than zero. The series in this cluster could be generally
associated with higher sea levels.

For Cluster 3, the minimum location value is lower than than of the other
clusters and the mean location in very similar to that of Cluster 2. Furthermore
the standardised location values in Cluster 3 are all negative, leading to the obser-
vation that the series in this cluster could generally be associated with lower sea
levels. While the series in Cluster 2 have almost crisp membership degrees (0.98
in each case), the standardised location estimates are also negative and smaller
than any of the negative standardised location estimates in Cluster 1, indicating
that these series could be associated with lower sea levels as well. However, many
series in Clusters 1 and 3 have substantial fuzzy membership degrees (identified
in bold italics in the membership degrees column in Table 4) in both clusters
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Fig. 7 Ternary Plot Depicting Cluster Membership
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indicating that over some periods of time, they have higher sea levels (positive
standardised location estimates) while over other periods of time, they have lower
sea levels (negative standardised location estimates) but it is not always clear
which of the GEV estimates or which combination of estimates contribute most
to this fuzziness. However, internally optimized weights from the weighted fuzzy
c-means cluster solution, for the location, scale and shape estimates were 0.097,
0.755 and 0.148, respectively, indicating that the scale estimate compared to the
location and the shape estimates contribute most to cluster separation. Those se-
ries in Clusters 1 and 3 with substantial fuzziness are depicted away from the
corners at the base of the triangle in the ternary plot.

Table 5 Means, Maxima and Minima of the 3-Cluster Solution

Mean Maximum Minimum
Cluster 1 7191.80 7360.44 7105.04
Cluster 2 7052.00 7092.52 7011.48
Cluster 3 7049.30 7130.83 6802.40

Figure 8 shows the GEV density function for each of the series of annual max-
ima under consideration. The broken-line red density curves towards the right-
hand side of the x-axis are those for the series of annual maxima from Cluster
1 (mostly higher sea levels), while the light green density curves near the centre
are those for the series annual maxima from Cluster 2, and the solid blue density
curves towards the left-hand side are those for the series of annual maxima from
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Fig. 8 GEV Density Functions: 3 Clusters
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Cluster 3 (lower sea levels). Both the separation of Clusters 1 and 3 as well as
fuzzy nature of some the series in these clusters are apparent from the positioning
of the density curves on the x-axis. It is also clear that the grouping of the two
series in Cluster 2 is strongly influenced by the shape estimates but in terms of
location they are closer to the series in Cluster 3 which are associated with the
lower sea levels.

4.1 Validation of the Cluster Solution

As a means of validating this fuzzy cluster solution, we applied the k -means method
with 3 clusters to the GEV estimates and found the crisp clusters had a 97%
agreement with the hard clusters identified from the fuzzy c-means analysis. We
also applied the other fuzzy clustering methods to the GEV estimates and obtained
relatively good coherence between the cluster solutions. In particular, there was a
85% agreement between the fuzzy c-means and weighted fuzzy c-means methods,
and a 97% agreement between the fuzzy c-means method and each of the fuzzy
c-medoids and weighted fuzzy c-medoids methods. For all methods the two series
with the very large scale estimates and with the shape estimates that were less than
or equal to -1 grouped together in one cluster. There were very few discrepancies
amongst these fuzzy methods in cluster membership of the other two clusters
as indicated by the percentages of agreement given above. This compatibility in
cluster solutions provides further validation of the obtained fuzzy c-means 3-cluster
solution.
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4.2 A 4-Cluster Solution

The fuzzy silhouette coefficients based on the fuzzy c-means method also indicated
that a 4-cluster solution might be an option. We applied the fuzzy c-means method
to the GEV estimates and obtained the cluster solution shown in Table 6, with
the clusters means, maxima and minima given in Table 7.

Table 6 4-Cluster Solution

Coastal Tide Gauge GEV Estimates Hard
Direction Station Location Std Loc Shape Scale Membership Degrees Cluster
SW Bunbury 7038.35 -0.96 62.33 -0.32 0.89 0.08 0.01 0.02 1
NE Bundaberg 6802.40 -3.24 41.75 0.19 0.41 0.29 0.09 0.21 1
NW Carnarvon 7082.80 -0.53 86.56 -0.20 0.64 0.20 0.03 0.13 1
SW Freemantle 6947.01 -1.84 60.70 -0.34 0.64 0.22 0.04 0.10 1
SE Gold Coast Seaway 7027.16 -1.07 61.74 -0.36 0.79 0.15 0.01 0.05 1
N Haypoint 7056.43 -0.78 50.35 -0.07 0.52 0.31 0.02 0.16 1
NW Onslow 7056.77 -0.78 82.58 -0.30 0.75 0.15 0.02 0.08 1
NE Townsville 7075.55 -0.60 48.42 -0.19 0.48 0.40 0.01 0.11 1
S Victor Harbour 7102.70 -0.33 63.34 -0.24 0.66 0.26 0.01 0.07 1
N Wyndham 7107.10 -0.29 110.91 -0.16 0.43 0.25 0.10 0.23 1
NW Broome 7129.95 -0.07 66.11 -0.62 0.30 0.41 0.07 0.21 2
S Burnie 7105.04 -0.31 37.17 -0.50 0.23 0.58 0.03 0.17 2
NE Cairns 7122.41 -0.14 45.52 -0.49 0.19 0.64 0.02 0.15 2
SE Eden 7130.83 -0.06 44.06 -0.19 0.19 0.62 0.01 0.19 2
SW Esperance 7199.57 0.61 57.24 -0.46 0.14 0.49 0.02 0.36 2
SW Geraldton 7163.99 0.26 72.73 -0.32 0.29 0.41 0.02 0.28 2
SW Hillarys 7160.54 0.23 71.01 -0.43 0.27 0.45 0.03 0.25 2
S Lorne 7212.14 0.73 43.15 -0.35 0.07 0.41 0.01 0.51 2
NE Mackay 7135.77 -0.01 52.48 -0.26 0.09 0.83 0.00 0.07 2
SE Mooloolaba 7112.01 -0.24 38.03 -0.32 0.15 0.73 0.01 0.11 2
NE Mourilyan Harbour 7149.35 0.12 52.15 -0.33 0.01 0.97 0.00 0.01 2
SE Newcastle 7134.05 -0.03 50.58 -0.32 0.00 0.99 0.00 0.00 2
SE Port Kembla 7188.27 0.50 42.47 -0.30 0.07 0.56 0.01 0.36 2
S Port Lincoln 7116.12 -0.20 54.54 -0.25 0.23 0.68 0.01 0.08 2
S Portland 7173.34 0.35 43.94 -0.39 0.08 0.73 0.01 0.19 2
NE Shute Harbour 7139.77 0.03 43.19 -0.17 0.18 0.58 0.01 0.23 2
S Stony Point 7146.90 0.09 44.52 -0.44 0.11 0.74 0.01 0.14 2
SE Sydney 7097.65 -0.38 42.90 -0.33 0.18 0.73 0.01 0.08 2
S Thevenard 7168.06 0.30 61.06 -0.32 0.13 0.62 0.01 0.24 2
S Port Adelaide 7092.52 -0.43 138.68 -1.07 0.01 0.01 0.97 0.01 3
S Port Pirie 7011.48 -1.22 145.10 -1.00 0.01 0.01 0.98 0.01 3
S Spring Bay 7228.43 0.88 40.46 -0.42 0.10 0.39 0.02 0.49 4
NE Bowen 7193.84 0.55 46.78 -0.19 0.08 0.33 0.01 0.59 4
NE Brisbane 7357.39 2.13 49.14 -0.23 0.10 0.20 0.03 0.68 4
NE Cape Ferguson 7334.36 1.91 49.72 -0.23 0.08 0.17 0.02 0.73 4
N Darwin 7235.29 0.95 74.98 -0.36 0.16 0.28 0.03 0.54 4
NE Port Alma 7206.96 0.68 45.19 0.14 0.23 0.30 0.03 0.44 4
NE Rosslyn Bay 7245.28 1.05 46.52 -0.13 0.06 0.15 0.01 0.78 4
N Weipa 7360.44 2.16 97.74 -0.33 0.20 0.25 0.10 0.45 4

We observe from Table 7 that Cluster 3 consists of the two series with the
dominant scale and shapes values that also grouped together in the 3-cluster so-
lution. As before, from the standardised locations of the series in this cluster it
would appear they are associated with lower sea levels.
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Table 7 Means, Maxima and Minima of the 4-Cluster Solution

Mean Maximum Minimum
Cluster 1 7029.63 7107.10 6802.40
Cluster 2 7143.91 7212.14 7097.65
Cluster 3 7052.00 7092.52 7011.48
Cluster 4 7270.25 7360.44 7193.84

The standardised locations of the series in Cluster 1 are all negative with
8 of the 10 being less than -0.55 implying that the series in this cluster could
generally be associated with lower sea levels. Some of these series have reasonable
fuzzy membership degrees in Cluster 2 which consists of series with both positive
standardised locations no more than 0.61 and negative standardised locations no
less than -0.38. The standardised locations of the series in Cluster 4 are all positive
being no less than 0.55 and these these series could generally be associated with
higher sea levels.

In Cluster 2, some of the series with negative standardised locations have rea-
sonable fuzzy membership in Cluster 1, while some of the series with positive
standardised locations have reasonable fuzzy membership in Cluster 4. The series
in Cluster 2 could mostly be associated with sea levels that are neither very high
nor very lower.

Hence, it appears that the 4-cluster solution gives a somewhat clearer separa-
tion of series with high and low sea levels than the 3-cluster solution does. This
is also apparent from the cluster means, maxima and minima in Table 7. This
separation is also apparent in Figure 8 which depicts the GEV density curves as-
sociated with the four clusters with different colours and patterns. Namely, GEV
fits to series associated with low sea levels are depicted by broken red curves while
those associated with between low and high sea levels are depicted by solid light
green curves; those associated with high sea levels are depicted by thin solid black
curves, while GEV fits to series dominated by the shape estimates are depicted as
thick solid blue curves. As well, the fuzzy membership of some the series across
the clusters is also apparent.

We also obtained the crisp 4-cluster solution using the k -means method and
found there was a 95% agreement with the equivalent hard clusters from this fuzzy
c-means 4-cluster solution.

4.3 Return Levels

One of the advantages of using the GEV features for clustering is that we can
interpret the fuzzy cluster solutions using the N -years returns levels (extreme
quantiles), that is, the values that can be exceeded once every N -years. We use
the expressions in Eq. 6 or in Eq. 7 to obtain 25, 50 and 100 years in order to
gain some insight into the 4-cluster solution obtained from the fuzzy c-means
method. The results are presented in Table 8 and they confirm and complement
our previous interpretation, that is, (1) the first cluster corresponds to localities
having low sea levels that could be no more than 7296 millimetres in periods of
100 years, (2) the second cluster corresponds to localities having not very high or
not very low sea levels, (3) the third cluster corresponds to localities having low
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Fig. 9 GEV Density Functions: 4 Clusters
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sea levels that could be no more than 7188 millimetres in periods of 100 years and
(4) the fourth cluster corresponds to sites having the high sea levels greater than
7440 millimetres in periods of 25 or more years. Compared to the maximum and
mean locations of the clusters in Table 8, these returns appear to be realistic.

In particular, the difference between the 25 year returns and the corresponding
location means based on the GEV fit to the 1993 to 2012 series of annual max-
ima, which correspond to projected sea level rises for series in 2037 in Clusters
1, 2, 3 and 4 are 0.209, 0.138, 0.131 and 0.169 metres, respectively. These pro-
jections fall mostly within the range of sea level projections of 0.132, 0.146 and
0.200 developed under three different scenarios by the Commonwealth Science and
Industry Research Organisation (CSIRO) for 2030, relative to 1990 (refer to Table
2.1 in [5]).

Table 8 Cluster Location Means and Maxima and 25, 50 and 100 Year Mean Returns Levels

Location Returns
max mean 25 years 50 years 100 years

Cluster 1 7107 7030 7238 7267 7296
Cluster 2 7212 7147 7284 7294 7303
Cluster 3 7093 7052 7183 7186 7188
Cluster 4 7360 7270 7440 7461 7482

Remark 3
Hourly and daily sea level time series are available from other web sites. However,
there are limitations with using such data mainly because most of these time series
contain missing values for several months in each of the years that measurements
were taken. Hence, the reason we used monthly rather than daily sea level time
series in our application.
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5 Concluding Remarks

New generalised procedures for fuzzy clustering taking into account weights have
been developed, and iterative solutions based on the GEV parameter estimators
have been obtained. It is clear from the simulation study, the GEV location es-
timates, in particular, are good separation features for the clustering of seasonal
time series. However, it has been observed from outcomes of the application to real
world data, viz., sea-level time series, all three GEV estimates are capable of con-
tributing to cluster separation. From the application we also noted that the fuzzy
clustering solutions can be meaningfully interpreted and validated. It should be
noted that if only crisp clustering methods were used to identify similar sea-level
series, the useful information about overlapping clusters would be lost.

An added advantage of using GEV modelling to analyse seasonal time series is
that return level statements can be made about long-term extremes, which in this
case of the application to groups of similar sea-level time series, may contribute
to economic and technical planning decisions to help address likely long-term sea
levels rises. Of course, other variables (coastal human activity, atmospheric ocean
processes, greenhouse gas concentrations, etc.) can also be analyzed with the pro-
posed procedure.

The future directions that we will be embarking on in analysing real time series
extremes is, (1) extending GEV fitting to extremes with trend, and (2) examining
the fuzzy behaviour of the series by incorporating their spatial features as an added
source of information.
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