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Abstract

An accurate estimation of a precision matrix has a crucial role in the cur-

rent age of high-dimensional data explosion. To deal with this problem, one

of the prominent and commonly used techniques is the `1 norm (Lasso) penal-

ization for a given loss function. This approach guarantees the sparsity of the

precision matrix estimator for properly selected penalty parameters. However,

the `1 norm penalization often fails to control the bias of the obtained estim-

ator because of its overestimation behavior. In this paper, we introduce two

adaptive extensions of the recently proposed `1 norm penalized D-trace loss

minimization method. The proposed approaches intend to diminish the pro-

duced bias in the estimator. Extensive numerical results, using both simulated

and real datasets, show the advantage of our proposed estimators.
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1 Introduction

The estimation of inverse covariance matrix (also known as precision matrix) is an

important problem in various research fields and methodologies. In the recent decade,

the high-dimensional precision matrix has attracted a growing interest due to the

massive flow of large datasets spanning several scientific areas. An accurate estimate

of a precision matrix has a fundamental role in discriminant analysis, forecasting

and several other statistical methodologies (Mardia et al. 1979; McLachlan 2004).

One of the applications involving a proper and stable precision matrix estimate is

the computation of the optimal portfolios for a large number of assets (Frahm and

Memmel 2010; Goto and Xu 2013).

The exceeding attractiveness of the precision matrix estimation emerges under

the assumption of multivariate normality of data. This statement is initially formu-

lated by Dempster (1972). It is well known that when the data follow a Gaussian

distribution, the zero entries (i, j) of the precision matrix indicate the conditional

independence between the variables i and j, given all the other variables (Lauritzen

1996). More specifically, under the normality assumption, the precision matrix rep-

resents the statistical dependency among the variables. Therefore, the precision

matrix is closely related to the Gaussian Graphical Models (GGM), which is a prom-

inent framework for representing the structure of the dependencies between normally

distributed variables (Whittaker 1990). There are several applications involving a

sparse precision matrix such as the estimation of genetic interaction networks through

high-dimensional gene expression data (Stifanelli et al. 2013; Yin and Li 2013),
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brain connectivity networks through neuroimaging techniques (Huang et al. 2010;

Ryali et al. 2012), climate networks (Zerenner et al. 2014), etc.

Without loss of generality, we assume that X is a n × p mean-centered sample

data matrix. Each row Xi = (Xi1, ..., Xip) is a realization of a p-variate random

vector, independent and identically distributed for i = 1, ..., n, and has an unknown

p× p covariance matrix Σ with the corresponding precision matrix Ω = Σ−1.

Substantial research exists related to the precision matrix estimation. The most

ordinary and classical precision matrix estimator is the inverse of the sample covari-

ance matrix S. Although the sample covariance matrix is an unbiased estimator of

the covariance matrix, its inverse S−1 contains a considerable bias.1 Moreover, when

p/n > 1, the matrix S becomes singular and, therefore, the classical estimator S−1

does not exist.

A straightforward approach is to invert a well-estimated covariance matrix, which

is known as a two-step or indirect estimation. In this way, several estimators of the

covariance and the correlation matrices have been provided with good practical and

theoretical properties. Among the most popular ones are the shrinkage estimators

(e.g., Ledoit and Wolf 2004; Schafer and Strimmer 2005; Warton 2008; Toulou-

mis 2015), robust estimators (e.g., Nguyen and Welsch 2010), estimators based

1When n > p, it is known that E(S−1)−Ω =
p + 2

n− p− 2
Ω. Therefore, the inverse of the sample

covariance matrix is highly unstable when the ratio p
n increases. For instance, when p = n/2 − 2,

then E(S−1)−Ω = Ω, therefore, the bias of the classical estimator S−1 has the same magnitude as Ω.

On the other hand, in high-dimensional settings, the eigenvalues of the sample covariance matrix

are widespread and the largest eigenvalues reach to extreme values, which makes the condition

number of S very large (Johnstone 2001).
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on thresholding, banding or tapering procedures (e.g., Bickel and Levina 2008;

El Karoui 2008; Cai and Yuan 2012; Wang and Daniels 2014) and those based on

convex optimization frameworks (e.g., Rothman 2012; Xue et al. 2012; Deng and

Tsui 2013; Cui et al. 2014). However, the two-step estimators may not be optimal

(Ledoit and Wolf 2012) and, moreover, the two-step approach does not guarantee

the sparsity of the precision matrix estimator.

In essence, shrinkage techniques can also be applied for estimating the precision

matrix, i.e., different linear combinations between the matrix S−1 and a selected

target matrix (see, for instance, Haff 1980; Frahm and Memmel 2010; Kourtis

et al. 2012). However, as explained above, these approaches can be used only when

p << n.

To overcome the computational challenges and to deal with the situation of p >

n, prior research proposed several precision matrix estimators based on a convex

optimization framework. To address the sparsity requirement of the matrix and to

attain an accurate precision estimator, the Lasso or `1 regularization can be applied.

Originally, Tibshirani (1996) introduced this framework in the regression framework.

Banerjee et al. (2008) proposed the `1 penalized log-likelihood function maximization

approach which is one of the remarkable estimations and known in the literature as

Graphical Lasso or, simply, glasso method. Prior work studied the `1 penalized log-

likelihood function maximization approach (e.g., Yuan and Lin 2007; d’Aspremont

et al. 2008; Banerjee et al. 2008; Rothman et al. 2008; Yin and Li 2013) and

several algorithms have been developed to solve the regularization problem efficiently

(e.g., Friedman et al. 2008; Duchi et al. 2008; Scheinberg et al. 2010). Moreover,



5

some scholars proposed approaches to improve the performance of the glasso method

through adaptive Lasso and SCAD (Smoothly Clipped Absolute Deviation) penalties

(see Fan et al. 2009) or through additional trace norm penalty (see Maurya 2014).

Others proposed procedures that efficiently speed-up the algorithms for solving the

glasso problem (Witten et al. 2011). More recently, Banerjee and Ghosal (2015)

proposed a Bayesian approach to the glasso method. Finally, several authors studied

non-likelihood precision estimation methods (see, for instance, Yuan 2010; Cai et al.

2011, among others).

As a consequence, the glasso method has become a state-of-the-art estimator

for the precision matrix and one of the most applied approaches for covariance se-

lection. It is worth noting that the loss function of the glasso is the negative log-

likelihood function of the Gaussian model. Although the Gaussian assumption of

data is quite restrictive, the glasso framework still provides a consistent estimator

for non-Gaussian data (Ravikumar et al. 2011). However, the log-likelihood function

may not be a comprehensible loss function because of its complex nature. Recently,

Zhang and Zou (2014) introduced a so-called D-trace loss which has a much simpler

structure. Through numerical simulations, they show that the `1 norm penalized

D-trace loss minimization approach outperforms the glasso estimator in terms of

different performance measures.

In this paper, we focus on the `1 norm penalized D-trace loss minimization

method. It is well known that `1 penalty produces significant biases because of

its overestimation feature (see, for instance, Zou 2006; Fan et al. 2009). The

contribution of this paper aimed to mitigate those biases. Based on the adaptive
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framework, we propose two re-weighted versions of the `1 norm penalized D-trace loss

minimization approach. We employ adaptive thresholding operators in our proposed

extensions. Previously, the adaptive framework has been applied in other context,

such as variable selection (see Zou 2006), precision matrix estimation (see Fan et al.

2009) and covariance matrix estimation (see Rothman et al. 2009). The advantage

of the adaptive Lasso framework in high-dimensional settings is that it provides a

stable and sparse estimator, simultaneously corrects the bias and, moreover, it does

not augment the computational time.

Through extensive numerical simulations we show that the methods based on the

proposed extensions outperform the original D-trace method. In particular, for the

simulation study we consider different models, including those used in the simulation

experiments by Zhang and Zou (2014). To measure the statistical performance of the

methods, we use the entropy loss, the Frobenius norm loss, the operator norm loss

and the matrix `1 norm loss. Furthermore, we use the percentages of correctly estim-

ated zeros and non-zeros, accuracy and Matthews Correlation Coefficient (MCC) to

measure the GGM prediction performance. Finally, we investigate the performance

of the estimators in discriminant analysis using real datasets.

The rest of the article is organized as follows. In Section 2, after introducing some

notations, we describe two extensions of the D-trace precision matrix estimation

based on the adaptive Lasso framework. We consider the statistical loss and GGM

prediction performance of the proposed estimators in Section 3 through exhaustive

numerical simulations. We compare our proposed estimators with the D-trace and

glasso estimators. In Section 4, we apply the proposed methodologies to two real-
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world applications: the prediction of breast cancer state and the prediction of the

colon cancer state. We provide the conclusions in Section 5. Finally, we provide the

simulation results in Appendix A.

2 Proposed Methodologies

Before proposing the adaptive extensions of the D-trace method, we introduce the

following notations. For any vector a = (a1, ..., ap)
T ∈ Rp, we define the vector `2 or

Euclidean norm ||a||2 =

√
p∑
j=1

a2
j . For any symmetric p× p matrix A = [aij]1≤i,j≤p ∈

Rp×p, we denote the Frobenius norm by ||A||2 =

√
p∑
i=1

p∑
j=1

a2
ij, the matrix `∞ norm

by ||A||∞ = max1≤i,j≤p |aij|, the matrix `1 norm by ||A||`1 = max1≤j≤p

p∑
i=1

|aij|, and

the spectral or operator norm by ||A||spec = sup||x||2≤1 ||Ax||2. We also denote the

componentwise `1 norm by ||A||1 =
p∑
i=1

p∑
j=1

|aij| and the off-diagonal componentwise

`1 norm by ||A||1,off =
p∑
i=1

p∑
j=1,j 6=i

|aij|. For any two symmetric p × p matrices A and

B, we write A � B or A � B if the matrix A−B is positive semidefinite or positive

definite, respectively. We denote the smallest eigenvalue of the matrix A by λmin(A).

We set diag(A) a diagonal matrix, which has the diagonal entries of A. Finally, we

assume that X is a centered sample data matrix with dimension n × p, where each

row Xi = (Xi1, ..., Xip) is a realization of a p-variate normal random vector that is

independent and identically distributed for i = 1, ..., n, with covariance matrix Σ and

precision matrix Ω = Σ−1.

The glasso estimator is the solution of the `1 penalized log-likelihood problem,
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defined as follows:

Ω̂glasso = arg max
Ω

log det Ω− trace(SΩ)− ν||Ω||1,off, (1)

where S =
1

n

n∑
i=1

XiX
T
i is the sample covariance matrix and ν > 0 is the penalty

parameter. Note that in the original definition of the glasso estimator, the norm

||Ω||1 is used in (1) rather than ||Ω||1,off. Although this term varies among different

studies, in this particular paper we choose the off-diagonal penalization. This enables

us to achieve fair comparison with the proposed method and with the results obtained

by the previous scholars.

Zhang and Zou (2014) have proposed the D-trace loss function, which has the

following definition:

fDT (Ω,Σ) =
1

2
trace(Ω2Σ)− trace(Ω). (2)

The function fDT (Ω,Σ) is convex in Ω, has a positive-definite Hessian matrix,

and a unique minimizer at Σ−1 (see Zhang and Zou 2014).

Zhang and Zou (2014) regularize the D-trace loss function through a `1 norm,

thus, proposing the penalized D-trace loss minimization estimator (hereafter, D-trace

or DT estimator) as the solution of the following optimization problem:

Ω̂DT = arg min
Ω�εI

1

2
trace(Ω2S)− trace(Ω) + τ ||Ω||1,off, (3)

where τ > 0 is the associated penalty parameter and ε is a small positive value. In

problem (3), we have selected the off-diagonal ||Ω||1,off penalty term to be consistent

with the original article. Similar to the glasso estimator, the ||Ω||1 penalty can also

be used for the D-trace estimator.
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To solve the problem (3), Zhang and Zou (2014) developed an algorithm based

on the alternating direction method. Previously, other authors have applied the

alternating direction method approach for solving optimization problems (see, for

instance, Scheinberg et al. 2010; Xue et al. 2012; Cui et al. 2014).

One of the important steps in the algorithm, where the Lasso penalty appears,

is the following optimization problem:

min
Ω=ΩT

1

2
trace(Ω2)− trace(ΩA) + τ ||Ω||1,off, (4)

where the matrix A is defined in the algorithm process. One can show that the

optimization problem (4) is strongly related to the soft thresholding operator. The

solution Ω̂ = [ω̂ij]1≤i,j≤p of problem (4) can be written as:

Ω̂ = T (A, τ), (5)

where T is the soft thresholding operator defined by:

[T (A, τ)]ij = sign(Aij) max(|Aij|−τ, 0)Ii 6=j+AijIi=j =



Aij, if i = j,

Aij − τ, if i 6= j, Aij > τ,

Aij + τ, if i 6= j, Aij < −τ,

0, if i 6= j,−τ ≤ Aij ≤ τ

(6)

for 1 ≤ i, j ≤ p.

As discussed in the Section 1, this paper addresses the bias problem of the Lasso.

From the regularization point of view, the `1 penalty may not be the best choice

because of this issue. In order to reduce the bias of the D-trace estimator, produced

through the Lasso regularization in (4) (or through the soft thresholding operator

(6)), we propose two adaptive extensions of the D-trace estimator.
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We propose our first adaptive approach, motivated by the idea of the adaptive

glasso method provided by Fan et al. (2009). First, for a specific weight matrix

W = [wij]1≤i,j≤p, we define the Weighted Adaptive Thresholding operator as:

[WAT (A, τ)]ij = sign(Aij) max(|Aij| −
τ

|wij|
, 0)Ii 6=j + AijIi=j, (7)

for 1 ≤ i, j ≤ p. One can straightforwardly verify the following property of the

weighted adaptive thresholding operator (7):

wij = 0 =⇒ [WAT (A, τ)]ij = 0, (8)

for 1 ≤ i, j ≤ p. The small wij weights imply large penalties for the (i, j) entries,

whereas the large wij weights imply small penalties for the (i, j) entries.

Next, we can write the weighted adaptive thresholding operator (7) as the solution

of the following convex optimization problem:

min
Ω=ΩT

1

2
trace(Ω2I)− trace(ΩA) + τ

p∑
i=1

p∑
j=1,j 6=i

|ωij|
|wij|

. (9)

Finally, by replacing the problem in (4) with the problem in (9), we derive our

proposed Weighted Adaptive D-trace estimator, defined as:

Ω̂WADT = arg min
Ω�εI

1

2
trace(Ω2S)− trace(Ω) + τ

p∑
i=1

p∑
j=1,j 6=i

|ωij|
|wij|

. (10)

Essentially, the matrix W is a prior information about the precision matrix or any

consistent, computationally cheap estimator (e.g., a well-defined two-step estimator)

and, therefore, should be chosen properly.

Our second adaptive approach is motivated by Rothman et al. (2009), where we

use the Adaptive Thresholding operator, defined as:

[AT (A, τ)]ij = sign(Aij) max(|Aij| −
τ

|Aij|
, 0)Ii 6=j + AijIi=j, (11)
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for 1 ≤ i, j ≤ p. The operator (11) can be considered as a special case of the operator

(7), when wij = Aij, 1 ≤ i, j ≤ p. To illustrate the idea, Figure 1 depicts the soft

and the adaptive thresholding operators for τ = 1.

Figure 1. Soft and Adaptive thresholding functions, for τ = 1.

The main advantage of the operator (11) is the absence of a weight matrix.

Through the Adaptive Thresholding operator (11), the large entries Aij are penalized

less and the small entries are penalized more. In other words, the operator (11)

overestimates less than the soft threshodling operator (6) since many smaller values

will be discarded. Hence, the operator (11) provides smaller bias than the operator

(6) (i.e., the Lasso penalization). As with the Weighted Adaptive D-trace estimator,

one can derive formulations similar to (9) and (10) for the Adaptive Thresholding
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operator. However, in these formulations the weight matrix W can not be defined

directly, since the matrix A appears in the solver and is not fixed. We can obtain

the D-trace estimator through the Adaptive Thresholding operator (11) by simply

replacing the soft thresholding operator (6) with the operator (11) in the algorithm

(see the Algorithm 1 bellow for more details). We call the estimator obtained through

the operator (11) the Adaptive D-trace estimator Ω̂ADT .

For completeness, we present the algorithm for solving the DT method and the

necessary modifications for solving WADT and ADT methods.

We first provide the definitions of some functions employed in the algorithm.

Assume that A = UV UT is the eigen-decomposition of any p× p symmetric matrix

A � 0 and v1 ≥ ... ≥ vp are its eigenvalues. For any p× p matrix B, define

G(A,B) = U{(UTBU) ◦ C}UT , (12)

where Ci,j =
2

vi + vj
for 1 ≤ i, j ≤ p and ◦ denotes the Hadamard product of

matrices.

Consider any symmetric matrix A and let A = UV UT = Udiag(v1, ..., vp)U
T is

its eigen-decomposition. For any ε > 0, define

[A]+ = Udiag{max(v1, ε), ...,max(vp, ε)}UT . (13)

Algorithm 1 provides the necessary steps for solving our proposed estimation

methods:

It is important to note that we can significantly reduce the computational time

of the Algorithm 1 by discarding the constraint Ω � εI in the initial optimization

problem (DT, WADT or ADT). This enables us to omit the function (13) from the
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Algorithm 1 Alternating direction method

Step 1. Initialization: k = 0, Λ0
0 = Λ0

1, Θ0
0 = Θ0

1.

Step 2. Repeat the following sub-steps until convergence:

(a) Set k=k+1.

(b) Compute the matrix Θk+1 = G(S + 2ρI, I + ρΘk
0 + ρΘk

1 − Λk
0 − Λk

1),

where function G is defined in (12).

(c) Set Θk+1
1 = [Θk+1 + Λk

1/ρ]+. Compute Θk+1
0 = T (Θk+1 + Λk

0/ρ, τ/ρ)

in case of DT estimator, Θk+1
0 = WADT (Θk+1 + Λk

0/ρ, τ/ρ) in case of

WADT estimator and Θk+1
0 = ADT (Θk+1 + Λk

0/ρ, τ/ρ) in case of ADT

estimator. The thresholding functions T, WADT and ADT are defined in

(6), (7) and (11), respectively.

(d) Set Λk+1
0 = Λk

0 + ρ(Θk+1 −Θk+1
0 ) and Λk+1

1 = Λk
1 + ρ(Θk+1 −Θk+1

1 ).

step 2c, which is the most computationally expensive part of the algorithm. We

call the optimization problem without the constraint Ω � εI the secondary problem,

defined as:

Ω̃ = arg min
ΩT =Ω

1

2
trace(Ω2S)− trace(Ω) + τPEN(Ω), (14)

where PEN(Ω) term is defined according to the estimation method (DT, ADT or

WADT). Following Zhang and Zou (2014), we also present the simplified version of

the Algorithm 1.

The algorithm stops if the following two conditions are satisfied:

||Θk+1 −Θk||2
max(1, ||Θk||2, ||Θk+1||2)

< 10−7,
||Θk+1

0 −Θk
0||2

max(1, ||Θk
0||2, ||Θk+1

0 ||2)
< 10−7,
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Algorithm 2 Alternating direction method (simplified)

Step 1. Initialization: k = 0, Λ0, Θ0
0 = diag(S)−1.

Step 2. Repeat the following sub-steps until convergence:

(a) Set k=k+1.

(b) Compute the matrix Θk+1 = G(S + 2ρI, I + ρΘk
0 − Λk).

Compute Θk+1
0 = T (Θk+1 + Λk/ρ, τ/ρ) in case of DT estimator, Θk+1

0 =

WADT (Θk+1 + Λk/ρ, τ/ρ) in case of WADT estimator and Θk+1
0 =

ADT (Θk+1 + Λk/ρ, τ/ρ) in case of ADT estimator.

(d) Set Λk+1 = Λk
0 + ρ(Θk+1 −Θk+1

0 ).

Step 3. Consider the converged Θk as the solution of the secondary problem

(14).

Step 4. If λmin(Θ̃) > ε, report Θ̃ as the solution of the initial problem. Other-

wise, use Algorithm 1 with Θ̃ as the starting value for Θ0
0 and Θ0

1.

Finally, in the algorithm we use ρ = 1 and ε = 10−8. For more details we refer to

Zhang and Zou (2014).

3 Simulation Study

In this section, we implement a simulation study to show the goodness of the

proposed WADT and ADT estimators and to compare their associated performance

with those of the DT estimator and the state-of-the-art estimator glasso. Particularly,
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in subsection 3.1, we introduce the models considered for the true precision matrix

Ω. In subsection 3.2, we describe the performance evaluation. In subsection 3.3, we

provide the discussion of the obtained results.

3.1 Considered Models

We perform an exhaustive numerical simulation study through eight different

sparsity configurations for the precision matrix, including random and fixed patterns.

The considered models for the true precision matrix Ω are the following:

• Model 1. AR(2) structure: ωi,i = 1, ωi,j = 0.2 for 1 ≤ |i − j| ≤ 2, and zero

otherwise.

• Model 2. AR(4) structure: ωi,i = 1, ωi,j = 0.2 for 1 ≤ |i − j| ≤ 4, and zero

otherwise.

• Model 3. A matrix with ωi,i = 1, ωi,i+1 = 0.2 for mod(i, p1/2) 6= 0, ωi,i+p1/2 =

0.2, and zero otherwise.

• Model 4. AR(1) structure: ωii = 1, ωi,i−1 = ωi−1,i = 0.45, and zero otherwise.

• Model 5. (Modified) AR(1) structure with different entries: Ω = G1/2ΩAR(1)G
1/2,

where G is a diagonal matrix with entries Gii =
4i+ p− 5

5(p− 1)
and ΩAR(1) is a mat-

rix with a structure defined in the model 4.

• Model 6. Decay structure: ωij = 0.6|i−j|.

• Model 7. A random positive-definite matrix, containing 5% of non-zero entries.
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• Model 8. A random positive-definite matrix, containing 10% of non-zero.

entries2

Our choice of these models is motivated as follows. To compare our proposed

methods with Zhang and Zou (2014), we consider the models employed in their

study (models 1, 2 and 3). In addition, we consider other models commonly used

in the prior literature, such as AR(1) structure model (model 4 - Yuan and Lin

(2007), Friedman et al. (2008)), its modified version (model 5) and decay structure

model (model 5 - Cai et al. (2011), Fan et al. (2009)). Note that models 1-6 have

deterministic patterns. We study the performance of the considered methods also

using models with random patterns (models 7 and 8). This allows us to obtain more

robust evaluation and to have better insight about the performance of the estimation

methods.

Consistent with Zhang and Zou (2014), we simulate multivariate normal random

samples with zero mean and sample size n = 400, for each of the models. For the

number of variables, we choose p = 484 for model 3 and p = 500 for the other models.3

These values allow us to examine the performance of the proposed estimators in high-

dimensional settings and, especially, when p > n. Finally, we repeat this procedure

100 times.

3.2 Performance Evaluation

Similar to Zhang and Zou (2014), to evaluate the statistical performance of a

2Models 7 and 8 are generated using the Matlab command sprandsym.
3For model 3 the value of p1/2 is required to be an integer
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given estimator Ω̂, we consider the Frobenius norm `2, the spectral norm `spec and

the matrix `1 norm, defined respectively as:

`2(Ω̂,Ω) = ||Ω̂− Ω||2, (15)

`spec(Ω̂,Ω) = ||Ω̂− Ω||spec, (16)

and

`1(Ω̂,Ω) = ||Ω̂− Ω||`1 . (17)

Next, we consider the entropy loss function, also known as Kullback-Leibler (KL)

loss function, consistent with its widespread application in the prior literature (see,

for instance, Yuan and Lin 2007; Rothman et al. 2008; Fan et al. 2009; Yin and

Li 2013). This function is defined as:

KLL(Ω̂,Ω) = trace(Ω−1Ω̂)− log det(Ω−1Ω̂)− p. (18)

In order to evaluate the sparsity pattern or GGM estimation performance, we

compute the percentages of correctly estimated non-zeros and zeros (also known as

sensitivity and specificity, respectively) and the accuracy of classification, defined

respectively as:

Sensitivity =
TP

TP + FN
× 100, (19)

Specificity =
TN

TN + FP
× 100, (20)
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and

Accuracy =
TN+TP

p2
× 100. (21)

Here TP, TN, FP and FN are the numbers of true positives (i.e., the number of

correctly estimated non-zero entries), true negatives (i.e., the number of correctly

estimated zero entries), false positives (i.e., the number of erroneously estimated

non-zero entries) and false negatives (i.e., the number of erroneously estimated zero

entries), respectively. It is worth noting that FP and FN refer to Type I and Type II

errors, respectively. We also compute the Matthews Correlation Coefficient (MCC),

which is commonly used to measure the performance of binary classifiers. The MCC

was introduced by Matthews (1975) and is defined as:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (22)

In order to select the penalty parameters ν and τ , in line with Zhang and Zou

(2014), we use five-fold cross-validation technique. For the WADT estimator, as a

weight matrix we choose the inverse of the Ledoit-Wolf shrinkage covariance estimator

W = Σ̂−1
LW . We use the Matlab code of Zhang and Zou (2014) to implement the

algorithm for the DT method and the modification of their code for the WADT and

ADT estimators.

3.3 Discussion of Results

We provide the simulation results in Appendix A to conserve space. Tables

5-12 report the averages of the corresponding losses and measurements over 100

replications. The standard deviations (SD) are given in parentheses. Tables 9, 10
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and 12 provide the measurements in percentages. We organize the discussion of our

results as follows. We first compare our proposed estimators ADT and WADT with

the DT estimator. We then compare our proposed estimators ADT and WADT with

the glasso estimator. We finally compare the DT estimator with the glasso estimator.

We report the statistical losses in Tables 5-8. We observe that for most of the

models either the ADT or the WADT estimator provides the lowest losses versus

the other methods (DT and glasso). More specifically, the ADT estimator provides

the lowest KLL for models 1, 2, 6, the lowest Frobenius norm and spectral norm for

models 2, 6 and the lowest matrix `1 norm for models 1, 3, 6. On the other hand,

the WADT estimator provides the lowest KLL for models 3, 4, 5, 7, 8, the lowest

Frobenius norm and spectral norm for models 1, 3, 4, 5, 7, 8 and the lowest matrix

`1 norm for models 4, 5, 7, 8. The only exception when the ADT estimator fails

to outperform the DT estimator is for models 2, 8 in terms of matrix `1 norm and

for models 1, 3, 7 in terms of spectral norm. The only exception when the ADT

estimator fails to outperform the glasso method is for model 3 in terms of KLL. The

only exception when the WADT estimator fails to outperform the DT estimator is

for models 1, 2 (only in terms of matrix `1 norm) and for model 6, which is precisely

a dense model. The WADT method outperforms glasso method in all the models.

The comparison of the performances of DT versus glasso yields the following

insights. In line with Zhang and Zou (2014), we find that DT outperforms glasso for

all the models in terms of Frobenius norm, spectral norm, and `1 norm. However,

in their work, Zhang and Zou (2014) did not compare DT and glasso in terms of

KLL. We find mixed results in comparative performance of DT versus glasso. We
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observe that DT outperforms glasso for models 1, 2, 5, 6, 7, 8 in terms of the KLL.

In contrast to Zhang and Zou (2014), we find that DT fails to outperform glasso for

models 3 and 4 in terms of KLL.

We report the GGM prediction performance in Tables 9-12.4 We observe that for

most of the models either the ADT or the WADT estimator provides better GGM

prediction performance than the other methods (DT and glasso). More specifically,

the ADT estimator provides the highest specificity for models 1, 3, the highest sensit-

ivity for model 2 and the highest MCC and accuracy for models 1, 2, 3. On the other

hand, the WADT estimator providesc the highest specificity for models 2, 4, 5, 7, 8

and the highest MCC and accuracy for models 4, 5, 7, 8. All the estimators provide

the same sensitivity for models 4 and 5. The only exception when our proposed

estimators (ADT and WADT) fail to outperform the DT estimator is for models 1,

3, 6, 7, 8 only in terms of sensitivity. However, for these models the DT estimator

fails to outperform the estimators ADT and WADT in terms of the overall GGM

prediction measures MCC and accuracy. In addition, the only exception when our

proposed estimators fail to outperform the glasso estimator is for models 3, 6, 7, 8 in

terms of sensitivity. However, the glasso estimator fails to outperform the proposed

estimators in terms of the overall GGM prediction measures MCC and accuracy for

those models. Comparing the DT estimator with the glasso estimator our findings

show that the later outperforms the DT estimator for models 3, 6, 7, 8 in terms

of sensitivity and for model 3 in terms of specificity. In terms of the overall GGM

4The specificity, MCC and accuracy are excluded for model 6 because these measures are defined

only for sparse models.
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prediction measures the DT estimator outperforms the glasso estimator for all the

models except for model 3, where the glasso provides slightly higher accuracy and

MCC than DT.

As a summary, our proposed adaptive approaches ADT and WADT outperform

the estimators DT and glasso for overwhelming majority of the considered models. In

spite of few exceptions, the proposed methods provide better performance in terms of

the statistical losses and GGM prediction measures, than the competitive methods.

In addition, our findings show that the WADT method provides relatively better

results than the ADT method when the required weight matrix is the inverse of an

estimated covariance matrix.

4 Real Data Applications

In this section, we perform an empirical analysis of the proposed adaptive ap-

proaches through real-data examples. In particular, we use breast cancer and colon

cancer datasets to predict the tumour behaviour using Linear Discriminant Analysis

(LDA). All applied datasets are available in the web site of the National Center for

Biotechnology Information.5

4.1 Breast Cancer Data

In the first application, we focus on the problem of predicting breast cancer

patients (subjects) with pathological complete response (pCR). This is an important

issue because after the neoadjuvant chemotherapy, according to Kuerer et al. (1999),

5Available at http://www.ncbi.nlm.nih.gov/.
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the pCR indicates a cancer-free life with high probability. For this application we use

a dataset (for the description of the dataset we refer to Shi et al. 2010) containing

gene expression levels of subjects with different stages of breast cancer. The dataset

consists of 22,283 gene expression levels of 271 subjects. There are 58 subjects with

pCR and 213 subjects with residual disease (RD).

First, we divide the data into a training set and a testing set with sizes 227 (almost

5/6 of the observations) and 44 (almost 1/6 of the observations), respectively, and

repeat this process 100 times. For the testing set, we randomly select 9 subjects with

pCR and 35 subjects with RD (roughly proportional to the number of the subjects

in each group). The training set contains the remaining subjects. Second, based on

the training set we perform two sample t-tests between the two groups in order to

select the most significant 100 genes with the smallest p-values. Third, using the

training set, we estimate the precision matrix Ω with the DT, ADT, WADT and

glasso methods. We obtain the penalty parameters for these methods using five-fold

cross-validation technique. Finally, we use the estimated precision matrix in the

LDA score, defined as follows:

δt(Y ) = Y T Ω̂µ̂t −
1

2
µ̂Tt Ω̂µ̂t, (23)

where t = 1, 2 (t = 1 for pCR and t = 2 for RD) and µ̂t =
1

nt

∑
i∈classt xi is the

within group average, calculated using the training data. We use the LDA score

δt(Y ) to classify the subject Y from the testing set. The rule for the classification is

t̂ = arg max δt(Y ) (t = 1, 2). To measure the prediction accuracy for all the methods,

we use the specificity, sensitivity and Matthews Correlation Coefficient (MCC), as

defined in Section 3.2. We consider TP and TN as the number of correctly predicted
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RD and pCR, respectively, and FP and FN as the number of erroneously predicted

RD and pCR, respectively. We report the average measurements over 100 replications

in Table 1.

Table 1. Average pCR/RD classification measurements over 100 replications for

p = 100 genes.

Method Specificity Sensitivity MCC

GLASSO 0.4800 0.7751 0.2333

DT 0.6556 0.7537 0.3572

ADT 0.6989 0.7409 0.3782

WADT 0.7211 0.7334 0.3889

Our findings show that the glasso provides the highest sensitivity, but it attains

the lowest specificity and MCC. On the other hand, the adaptive approach WADT

provides the highest specificity and dominates all the other estimators in terms of

MCC. Furthermore, the ADT and WADT estimators show similar results, the latter

being slightly better.

To check the robustness of the obtained results, we repeat the same application

by considering the most significant 200 genes instead of 100. Table 2 reports the

results. Our findings show that the results are roughly similar to those obtained

with 100 genes. The adaptive methods ADT and WADT outperform DT and glasso

methods in terms of the overall measurement MCC.
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Table 2. Average pCR/RD classification measurements over 100 replications for

p = 200 genes.

Method Specificity Sensitivity MCC

GLASSO 0.4600 0.7891 0.2310

DT 0.6333 0.7620 0.3459

ADT 0.7033 0.7394 0.3793

WADT 0.7089 0.7414 0.3860

4.2 Colon Cancer Data

In the second application, we consider the problem of classifying the colorectal

cancer patients with Microsatellite Stability (MSS) state and Microsatellite Instabil-

ity (MSI) state. The dataset (for the description of the dataset we refer to Jorissen

et al. 2008) contains the expression levels of 54,675 genes for 155 colorectal cancer

samples. There are 77 MSS and 78 MSI specimens in the dataset.

As with the first application, we divide the data into a training set and a testing

set with sizes 130 (almost 5/6 of the observations) and 25 (almost 1/6 of the observa-

tions), respectively, and repeat this process 100 times. We randomly select 12 MSS

and 13 MSI specimens (roughly proportional to the number of the subjects in each

group), respectively, for the testing set and the training set contains the remaining

subjects. Again, we select the 100 most-significant genes and estimate the precision

matrix Ω with the DT, ADT, WADT and glasso methods. We obtain the penalty

parameters for these methods using five-fold cross-validation technique. Finally, we

use the estimated precision matrix in the LDA score (23), where t = 1 is for MSS
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specimens and t = 2 is for MSI specimens.

Table 3 shows the average performance measures over the 100 replicates. We

observe that glasso provides the lowest performance measures while the WADT es-

timator provides the highest ones. The DT and ADT estimators provide relatively

similar results.

Table 3. Average MSI/MSS classification measurements over 100 replications for

p = 100 genes.

Method Specificity Sensitivity MCC

GLASSO 0.9258 0.8961 0.8262

DT 1 0.8977 0.9020

ADT 1 0.8915 0.8966

WADT 1 0.9208 0.9235

We repeat the same application by considering the most significant 200 genes

instead of 100. Table 4 provides the results. We observe that the results are similar

to those obtained using 100 genes.

In sum, our findings show that in the considered applications the proposed WADT

and ADT methods are able to provide better classification performance than DT and

glasso estimators.

5 Conclusions

In this article, we develop two novel approaches for estimating the precision mat-

rix, based on the adaptive `1 regularization framework. We extend the recently
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Table 4. Average MSI/MSS classification measurements over 100 replications for

p = 200 genes.

Method Specificity Sensitivity MCC

GLASSO 0.8558 0.8330 0.6956

DT 1 0.9015 0.9050

ADT 1 0.9054 0.9086

WADT 1 0.9238 0.9258

introduced D-trace estimator to Weighted Adaptive D-trace (WADT) and Adapt-

ive D-trace (ADT) estimators to correct the bias of the estimated precision matrix

produced by the `1 penalty. In our proposed methodologies we use the adaptive

thresholding operators. We conduct an extensive numerical analysis, applying both

simulated and real data sets. For the WADT estimator we use the two-step preci-

sion matrix estimator as a weight matrix. Our findings show that it is a practical

choice. We use different loss functions and prediction performance measures for the

evaluation. The results show that the proposed estimators outperform the DT and

glasso estimators. In particular, the WADT and ADT estimators provide lower stat-

istical losses and higher GGM prediction measures than those for the DT and glasso

methods.
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A Appendix: Numerical Results

Table 5. Average KL losses (with standard deviations) over 100 replications.

Methods Model 1 Model 2 Model 3 Model 4

Glasso 21.680 (1.388) 38.497 (0.342) 16.792 (0.436) 18.201 (0.685)

DT 20.598 (0.384) 37.335 (0.331) 19.317 (0.494) 19.381 (0.454)

ADT 19.171 (0.483) 34.318 (0.434) 17.511 (0.595) 6.727 (0.285)

WADT 19.536 (0.970) 35.512 (0.496) 12.860 (0.513) 4.652 (0.214)

Methods Model 5 Model 6 Model 7 Model 8

Glasso 23.336 (0.389) 53.028 (0.270) 41.149 (0.333) 47.480 (0.333)

DT 18.518 (0.517) 30.733 (0.433) 29.248 (0.423) 33.168 (0.407)

ADT 10.642 (0.416) 21.219 (0.344) 28.342 (0.390) 31.611 (0.916)

WADT 4.9425 (0.247) 48.439 (0.337) 21.880 (0.475) 26.031 (0.483)

Table 6. Average Frobenius norm losses (with standard deviations) over 100

replications.

Methods Model 1 Model 2 Model 3 Model 4

Glasso 7.402 (0.314) 12.042 (0.030) 5.398 (0.060) 6.931 (0.314)

DT 6.953 (0.066) 11.467 (0.041) 4.898 (0.063) 4.890 (0.082)

ADT 6.685 (0.094) 10.681 (0.068) 4.803 (0.081) 2.741 (0.076)

WADT 6.563 (0.396) 10.949 (0.123) 4.068 (0.080) 2.366 (0.066)

Methods Model 5 Model 6 Model 7 Model 8

Glasso 5.512 (0.042) 20.782 (0.032) 3.307 (0.013) 3.774 (0.011)

DT 2.668 (0.070) 16.057 (0.080) 2.296 (0.027) 2.765 (0.025)

ADT 1.938 (0.063) 13.478 (0.119) 2.205 (0.030) 2.627 (0.068)

WADT 1.562 (0.058) 18.106 (0.066) 1.960 (0.024) 2.307 (0.026)
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Table 7. Average operator norm losses (with standard deviations) over 100

replications.

Methods Model 1 Model 2 Model 3 Model 4

Glasso 0.774 (0.028) 1.630 (0.007) 0.589 (0.013) 0.663 (0.026)

DT 0.741 (0.018) 1.556 (0.012) 0.535 (0.016) 0.539 (0.024)

ADT 0.750 (0.023) 1.454 (0.020) 0.544 (0.022) 0.388 (0.029)

WADT 0.704 (0.054) 1.474 (0.024) 0.451 (0.021) 0.348 (0.038)

Methods Model 5 Model 6 Model 7 Model 8

Glasso 0.797 (0.022) 2.980 (0.005) 0.613 (0.009) 0.736 (0.007)

DT 0.412 (0.030) 2.474 (0.017) 0.544 (0.009) 0.644 (0.009)

ADT 0.317 (0.031) 2.198 (0.032) 0.551 (0.009) 0.644 (0.012)

WADT 0.292 (0.032) 2.691 (0.012) 0.509 (0.010) 0.593 (0.012)

Table 8. Average matrix `1 norm losses (with standard deviations) over 100

replications.

Methods Model 1 Model 2 Model 3 Model 4

Glasso 1.329 (0.138) 2.032 (0.042) 0.992 (0.050) 0.970 (0.038)

DT 1.109 (0.047) 1.939 (0.034) 0.924 (0.043) 0.680 (0.034)

ADT 1.051 (0.045) 1.953 (0.052) 0.840 (0.045) 0.505 (0.038)

WADT 1.138 (0.121) 1.955 (0.052) 0.846 (0.053) 0.477 (0.048)

Methods Model 5 Model 6 Model 7 Model 8

Glasso 0.923 (0.030) 3.390 (0.039) 1.242 (0.014) 1.659 (0.015)

DT 0.590 (0.045) 2.900 (0.042) 1.077 (0.033) 1.571 (0.028)

ADT 0.426 (0.047) 2.612 (0.054) 1.077 (0.034) 1.575 (0.039)

WADT 0.385 (0.046) 2.916 (0.026) 0.997 (0.044) 1.522 (0.038)
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Table 9. Average specificity (with standard deviations) over 100 replications.

Methods Model 1 Model 2 Model 3 Model 4

Glasso 97.01 (1.21) 98.14 (0.05) 98.18 (0.05) 96.30 (0.72)

DT 98.26 (0.03) 98.18 (0.04) 98.03 (0.04) 99.33 (0.02)

ADT 99.49 (0.02) 98.68 (0.03) 99.73 (0.01) 99.63 (0.01)

WADT 98.96 (0.68) 98.87 (0.15) 99.05 (0.08) 99.66 (0.02)

Methods Model 5 Model 6 Model 7 Model 8

Glasso 95.31 (0.07) NA (NA) 94.78 (0.07) 94.73 (0.07)

DT 97.40 (0.05) NA (NA) 97.86 (0.05) 98.02 (0.04)

ADT 99.17 (0.02) NA (NA) 98.45 (0.03) 98.38 (0.38)

WADT 99.70 (0.02) NA (NA) 99.63 (0.02) 99.46 (0.02)

Table 10. Average sensitivity (with standard deviations) over 100 replications.

Methods Model 1 Model 2 Model 3 Model 4

Glasso 88.94 (5.04) 61.23 (0.77) 99.62 (0.15) 100 (0)

DT 91.17 (0.82) 67.53 (0.81) 99.54 (0.20) 100 (0)

ADT 84.13 (1.26) 68.18 (0.91) 97.20 (0.53) 100 (0)

WADT 84.55 (5.20) 62.01 (1.62) 98.97 (0.33) 100 (0)

Methods Model 5 Model 6 Model 7 Model 8

Glasso 100 (0) 4.86 (0.08) 20.25 (0.30) 12.92 (0.19)

DT 100 (0) 3.88 (0.04) 19.37 (0.26) 11.36 (0.15)

ADT 100 (0) 1.77 (0.02) 17.87 (0.24) 10.72 (0.67)

WADT 100 (0) 0.68 (0.09) 16.65 (0.23) 9.80 (0.13)
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Table 11. Average MCC (with standard deviations) over 100 replications.

Methods Model 1 Model 2 Model 3 Model 4

Glasso 0.467 (0.082) 0.467 (0.005) 0.589 (0.006) 0.372 (0.036)

DT 0.555 (0.005) 0.511 (0.005) 0.573 (0.004) 0.685 (0.006)

ADT 0.720 (0.009) 0.565 (0.006) 0.872 (0.005) 0.785 (0.007)

WADT 0.639 (0.080) 0.549 (0.010) 0.708 (0.016) 0.800 (0.009)

Methods Model 5 Model 6 Model 7 Model 8

Glasso 0.329 (0.002) NA (NA) 0.136 (0.002) 0.094 (0.002)

DT 0.427 (0.003) NA (NA) 0.216 (0.003) 0.164 (0.002)

ADT 0.646 (0.006) NA (NA) 0.230 (0.003) 0.172 (0.007)

WADT 0.816 (0.010) NA (NA) 0.325 (0.004) 0.229 (0.003)

Table 12. Average accuracy (with standard deviations) over 100 replications.

Methods Model 1 Model 2 Model 3 Model 4

Glasso 96.93 (1.15) 97.48 (0.04) 98.19 (0.05) 96.33 (0.71)

DT 98.19 (0.03) 97.63 (0.04) 98.05 (0.03) 99.33 (0.02)

ADT 99.33 (0.02) 98.13 (0.03) 99.71 (0.01) 99.63 (0.01)

WADT 98.82 (0.62) 98.21 (0.12) 99.05 (0.08) 99.67 (0.02)

Methods Model 5 Model 6 Model 7 Model 8

Glasso 95.34 (0.07) NA (NA) 91.21 (0.06) 86.96 (0.06)

DT 97.41 (0.05) NA (NA) 94.10 (0.04) 89.79 (0.04)

ADT 99.18 (0.02) NA (NA) 94.59 (0.03) 90.05 (0.28)

WADT 99.70 (0.02) NA (NA) 95.65 (0.02) 90.94 (0.02)
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