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Comparing models for the exceedances over high thresholds
with applications to extreme temperatures

Andrés M. Alonso · Patricia de Zea Bermudez ·
Manuel G. Scotto.

Abstract In this paper, a subsampling-based procedure for the comparison of the
exceedances distributions of stationary time series is proposed. To this extent, a test
based on distances between Generalized Pareto distributions is introduced and stu-
died in some detail. The performance of the testing procedure is illustrated through a
simulation study and with an empirical application to a set of data concerning daily
maximum temperature in seventeen regions of Spain.

Keywords Extreme value theory · generalized Pareto distribution · peaks over
threshold · subsampling

1 Introduction

The Generalized Pareto Distribution (GPD, in short) plays a central role in extreme
value statistics as a distribution of the sample of excesses above a high threshold,
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method commonly referred to as the Peak-Over-Threshold (POT, in short) method
(Davison and Smith, [9]; Pickands, [35]). The POT method has been extensively
used in hydrology (e.g. Katz et al., [22]), finance and insurance (e.g., Gupta and
Liang, [20]; Chavez-Demoulin and Embrechts, [7]; Lauridsen, [24]), precipitation
(e.g., Furrer and Katz, [18]; Cameron et al., [3]), environment (e.g., Draghicescu and
Ignaccolo, [14]; Mendes et al. [28]; Nogaj et al, [33]; Tobı́as and Scotto, [40]; Naveau
et al., [31]; Niu, [32]), and ocean engineering (e.g., Letetrel et al. [26]; Menendez et
al. [30]; Méndez et al. [29]) just to mention a few; see Scarrott and MacDonald [37]
for further applications. In the last two decades extensive research has been focused
on characterizing the GPD and on deriving probabilistic and statistical results; see, for
example, de Zea Bermudez and Kotz ([12],[13]), de Haan and Ferreira [11], Castillo
et. al. [6], and Kotz and Nadarajah [23] for details.

A typical research question of many empirical studies in the area of environmen-
tal processes attempts comparing differences among time series with regard to their
corresponding extremal behavior. The study of extreme values is of particular inter-
est in a climate change context. For example, in studies of regional variability of
daily mean temperature time series it is important to identify locations exhibiting
similar behavior in terms of their corresponding distributions of return values for a
pre-defined period of time (see e.g., Scotto et al. [39]). Further examples can be found
in the analysis of regional variability of tide gauge records. Knowledge about extreme
sea-levels is essential for prediction of flooding risks, coastal management and design
of coastal infrastructure systems; see Scotto et al. [38] and the references therein.

A natural way of inferring on such differences should be to employ statistical tests of
equality of Generalized Pareto distributions (GPDs). More precisely, let (Xt) ≡ (Xt :
t ∈ ZZ) and (Yt) ≡ (Yt : t ∈ ZZ) be two strictly stationary processes with underlying
models FX and FY , respectively. In addition, assume that GX and GY are the genera-
lized Pareto distributions for excesses above a sufficiently high threshold of (Xt) and
(Yt), respectively. The interest lays on testing the null hypothesis that

H0 : GX (x) = GY (x) for almost all x ∈ IR+, (1)

against the alternative hypothesis H1 that GX (x) 6= GY (x) on a set with positive mea-
sure.

To this extent, in this paper a testing procedure based on subsampling techniques
for testing the equality of GPDs related with the excesses of two stationary time
series, which may not be considered independently generated, is introduced. The
Kolmogorov-Smirnov distance and the L1-Wasserstein distance are adopted as a met-
ric between the two corresponding empirical distribution functions. We follow closely
the procedure introduced by Alonso and Maharaj [1]. Their ideas will be applied
throughout the paper. The performance of the testing procedure is illustrated through
a simulation study and with an empirical application to a set of data concerning
daily mean temperature collected over the period 1990 and 2004 in 17 locations
in Spain. Further results concerning extreme temperatures in Spain can be found in
Furió and Meneu [17], Fernández-Montes and Rodrigo [10], Brunet et al. [4] and



Title Suppressed Due to Excessive Length 3

Garcı́a-Herrera et al. [19]

The rest of the paper is organized into the following sections: Section 2 describes
the methodological aspects concerning extreme value theory (EVT, in short) and hy-
pothesis testing based on subsampling. Section 3 presents the results of an extensive
Monte Carlo study and Section 4 illustrates the behavior of the proposed procedure
with a real data example. A brief summary of conclusions is given in Section 5.

2 Methodological aspects

2.1 Basic concepts about EVT

The Generalized Extreme Value (GEV, in short) distribution as well as the GPD,
are two of the traditional distributions used for modeling extremal events. The GEV
distribution is obtained as the limiting distribution of the maxima, conveniently nor-
malized, of a set of independent and identically distributed (i.i.d.) random variables
(r.v’s) X1,X2, . . . ,Xn with common cumulative distribution function (c.d.f.) F . Ef-
fectively, classical extreme value theory states that if sequences of real numbers an
(an > 0) and bn exist for all n ∈ IN such that

lim
n→∞

P
(

max(X1,X2, . . . ,Xn)−bn

an
≤ x
)
= lim

n→∞
Fn(anx+bn) = G(x), (2)

for all the values x for which G is a continuous function, then F is said to belong to
the max-domain of attraction of G, commonly denoted by F ∈ D(G). The c.d.f. G(.)
is the GEV(k,µ,σ ) and is given by

G(x | k,µ,σ) =


exp
[
−
(
1+ k x−µ

σ

)− 1
k

]
, 1+ k x−µ

σ
> 0, k 6= 0

exp
[
−exp

(
− x−µ

σ

)]
, x ∈ IR, k = 0

, (3)

where k ∈ IR, µ ∈ IR and σ > 0 are the shape, location and scale parameters, respec-
tively. The Fréchet, Gumbel and Weibull domains of attraction are obtained for k > 0,
k = 0 and k < 0, respectively. The Fréchet domain of attraction embraces heavy-
tailed distributions with polynomially decaying tails. All d.f.’s belonging to Weibull
domain of attraction are light-tailed and have finite right endpoints. The intermedi-
ate case k = 0 is of particular interest in many applied sciences, not only because
of the simplicity of inference within the Gumbel domain of attraction, but also for
the great variety of distributions possessing an exponential tail, whether having finite
right endpoint or not.

An alternative and more efficient approach to modeling the sample of maxima is
the POT methodology. The POT was developed by the hydrologists and consists of
fitting a parametric model to the excesses (or to the exceedances) above a sufficiently
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high threshold. In this framework, let Gu be the conditional c.d.f. of the excesses
above u, defined as

Gu(x) = P(X−u≤ x | X > u) =
G(u+ x)−G(u)

1−G(u)
, 0≤ x≤ xG−u.

Pickands [35], and also Balkema and de Haan [2], proved that:

lim
u→uG

sup
0<x<xG−u

|Gu(x)−G(x | k,σ)|= 0, (4)

being xG (xG ≤ ∞) the endpoint of the distribution and G the c.d.f. of the two-
parameter GPD given by:

G(x | k,σ) =

{
1−
(
1+ kx

σ

)−1/k
, k 6= 0

1− exp(− x
σ
), k = 0

, (5)

where k and σ are the shape and scale parameters, respectively. For k ≥ 0, x > 0,
while 0 < x < −σ/k provided that k < 0. Like the GEV distribution the GPD has
been widely applied to several areas such as environment, finance, forest fires and
climatology. It is relevant to point out that both GEV distribution and the GPD, al-
though resulting from different approaches share the same shape parameter.

In real data applications, the choice of an adequate threshold is frequently a very
difficult task. The use of the Mean Excess Function (MEF, in short) is sometimes
useful for determining the value u such that

P(X > x+u | X > u)≈
(

1+
kx
σ

)−1/k

.

The theoretical MEF is defined as e(u) := E(X−u | X > u) and is estimated by

en(u) :=
∑

n
i=1(xi−u)I(xi > u)

∑
n
i=1 I(xi > u)

,

where x1,x2, . . . ,xn is an observed sample and I(·) the indicator function. For a GPD(k,σ),
the MEF is given by

e(u) :=
σ

1− k
+u

k
1− k

, k < 1 and σ + ku > 0. (6)

If the data fits to a GPD then the plot of the empirical MEF, as a function of u,
should be (approximately) a straight line above the level u. The slope and intercept
of the straight line take the form k/(1−k) and σ/(1−k), respectively. For k = 0, the
empirical MEF is constantly equal to σ , whereas it increases (or decreases) for k > 0
(or k < 0). One of the benefits of utilizing the GPD, besides the more profitable use of
the information contained in the sample (as compared to using the GEV for modeling
the sample maxima), is the so-called stability property. Indeed, if X ∼GPD(k,σ)
then X − u | X > u ∼GPD(k,σ + ku). This property is very useful in the choice of
an adequate threshold u. Another common approach for locating an appropriate u
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consists on plotting the estimates of the shape parameter k as a function of u and
try to locate a stable part in the graph, where there seems to be a balance between
bias and variance. A simpler and most useful alternative consists on considering the
threshold as the 0.90 sample quantile of the distribution, as indicated by DuMouchel
[15].

Several methods have been proposed in the literature for estimating the param-
eters of the GPD. De Zea Bermudez and Kotz ([12],[13]) reviewed several of these
methods (see also Mackay et al. [27] for un update). The maximum likelihood stands
out as the most widely used estimation method for the GPD, along with the proba-
bility weighted moments and the method of moments. Another very useful method
is the elemental percentile method proposed by Castillo and Hadi [5]. This method
is easy to apply, never produces non-feasible estimates and it is an alternative to the
three methods referred to above in many circumstances, namely when the algorithm
used for producing the maximum likelihood estimates fails to converge or when the
sample size is very small.

It is worth mentioning that the methods explained in the previous paragraphs rely
on the fact that the sample maxima or the sample of excesses above u are i.i.d. This
is valid in a limited number of situations but definitely not when considering an ex-
treme value analysis within a time series framework. Essentially, as long as the time
series is stationary and the dependence between the large observations decreases, as
the distance between the observations increases, then the general i.i.d. theory applies
after some adaptations. Basically, it is sufficient to admit that the stationary time se-
ries satisfies Leadbetter’s-D(un) condition (see Leadbetter et al. [25] for details).

The dependency of the extremes is expressed by means of the extremal index,
usually denoted by θ . The extremal index satisfies 0 ≤ θ ≤ 1. For i.i.d. r.v’s θ = 1.
Nonetheless, this is only a necessary condition for independence. As the value of θ

decreases, the dependency of the largest observations increases and as such, the ex-
ceedances tend to form clusters. Effectively, the limiting mean size of the clusters
is given by 1/θ . In spite of the clustering behavior of the largest observations, the
limiting distributions of the samples of maximums of the stationary and of the i.i.d.
sequences belong to the same GEV family (see, e.g., Coles [8] for further details).

The dependency of the largest observations is also an issue to address when using
the POT approach. This problem is tackled by making use of a so-called declustering-
method. One of the most common techniques (see, e.g. Coles, [8]) consists of the
following steps:

– define what a cluster exceedance consists on;
– based on the observed sample, determine the existing clusters;
– select the maximum value of each cluster;
– fit a GPD to the sample of cluster maxima (considering that the maximum cluster

values are independent).

This is the declustering-method applied in the data analysis presented in Section 4.
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2.2 Hypothesis testing procedure based on subsampling

Let (Xt) and (Yt) be two strictly stationary processes with underlying models PX and
PY , respectively. Let X := (X1,X2, . . . ,XnX ) and Y := (Y1,Y2, . . . ,YnY ) be vectors
of observations from (Xt) and (Yt), respectively. Let GX and GY be the generalized
Pareto distributions for the excesses above a sufficiently high threshold of (Xt) and
(Yt), respectively.

We focus on the following two-sided problem of testing

H0 : GX = GY
H1 : GX 6= GY

, (7)

i.e., to test if the limiting distribution of the excesses is the same in both processes.
To this extent, we consider a distance-based test statistic

Tn,d := τnd(Ĝn,X , Ĝn,Y ), (8)

being the normalizing constant τn :=
√

(nX ∗nY )/(nX +nY ), ĜnX ,X = GPD(k̂X , σ̂X )

and ĜnY ,Y = GPD(k̂Y , σ̂Y ) are the estimated GPD’s from X and Y (i.e., (k̂X , σ̂X ) and
(k̂Y , σ̂Y ) are estimated using X and Y , respectively), and d(·, ·) is an adequate metric
capturing the discrepancies between the two estimated distribution functions. In this
case, the Kolmogorov-Smirnov distance

dKS(F1,F2) := sup
−∞<x<+∞

|F1(x)−F2(x)| (9)

and the L1-Wasserstein distance

dW (F1,F2) :=
∫ +∞

−∞

|F1(x)−F2(x)|dx, (10)

are adopted.

The general subsampling approach (see, e.g. Politis et al., [36]) is applied to the
statistic Tn,d as follows:

1. Let X j := (X j, . . . ,X j+l−1) and Y j := (Yj, . . . ,Yj+l−1) with j = 1, . . . ,n− l+1 be
the subsamples of l consecutive observations from X and Y , respectively. The
j-th subsampling statistic, T ( j)

l,d is calculated through

T ( j)
l,d := τld(Ĝl,X j , Ĝl,Y j), (11)

where Ĝl,X j = GPD(k̂X j , σ̂X j) and Ĝl,Y j = GPD(k̂Y j , σ̂Y j) are the estimated GPD’s
from the subsamples X j and Y j, respectively.

2. The critical value for the test is obtained as the 1−α quantile of Ĥn,l(x) :=
1

n−l+1 ∑
n−l+1
j=1 I(T ( j)

l ≤ x) defined as

hn,l(1−α) := inf
{

x : Ĥn,l(x)≥ 1−α

}
. (12)
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3. Thus, H0 is rejected if and only if Tn,d > hn,l(1−α).

Notice that the proposed algorithm remains valid for dependent series since the sub-
samples (X j,Y j) can be considered as a vector of size l from the bidimensional
process {(Xt ,Yt)}.

3 Simulation study

In this section, the behavior of the proposed testing procedure for finite samples is
analyzed using data sets generated from the autoregressive model

Xt = φXt−1 +Zt , t ∈ ZZ, (13)

where (Zt) are i.i.d. innovations. The simulation study contemplates two different
values for φ , namely 0 and 0.5, and three possible distribution for Zt , namely (a)
Uniform(0,θ), (b) Exponential(θ) and (c) Fréchet(θ) are considered with the set of
parameters θ = {1,1.25,1.5,2,5}. These three distributions exhibit different patterns
in what concerns to their extremal behavior. In the case of uniform and exponentially
distributed innovations the test based on L1-Wasserstein distance is considered. In
the case of Fréchet distributed innovations the test based on Kolmogorov-Smirnov
distance is adopted since the Fréchet distribution can exhibit infinite first moment
depending on the value of its corresponding tail index. Notice that L1-Wasserstein
distance metrizes weak convergence plus convergence of first absolute moments. A
sample size n = 2048 and the nominal size α = 0.05 is adopted to carry out the simu-
lation analysis. We present the simulations results for pairs of series that are assumed
to be independently generated from each other but using the algorithm based on the
expression (12).

The threshold u is fixed as the 95% sample quantile. The fact that sometimes the
sample size of excesses above u is small justifies the use of the Elemental Percentile
Method (EPM), proposed by Castillo and Hadi [5] for estimating the parameters of
the corresponding GPDs, as an alternative to the celebrated ML method. The con-
straints imposed by the ML method in terms of the regularity conditions, as well as
the issues associated to the convergence of the algorithms used to produce the param-
eter estimates, may cause problems to a simulation study. The EPM is known to be a
very flexible and easy to use method that never produces unfeasible results (see e.g.
de Zea Bermudez and Kotz [12]).

In Tables 1 and 2 below the estimated size of the test for l = 256, 512 and 1024
are displayed. These values of l were selected to assess the sensitivity of the test to
a reasonable range of subsampled lengths. To estimate the size of the test 1000 in-
dependent replicas are generated. Therefore, an estimated size between 0.0365 and
0.0635 would not be significantly different from the nominal value 0.05. As expected,
the results strongly dependent on the subsampled lengths. While reasonable size es-
timates are obtained, for the lower values of l (i.e., l = 256 and 512), in several cases
they are significantly different from the nominal size of 0.05. A possible solution to
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obtain sizes closer to the nominal size is to use a calibration procedure as in Section
9.4 of Politis et al. [36].

Table 1 Estimated size of the test (n = 2048) applied to the AR model in (13) with uniformly and expo-
nentially distributed innovations.

Uniform distribution Exponential distribution
φ = 0.0 θ l = 256 l = 512 l = 1024 θ l = 256 l = 512 l = 1024

1.00 0.062 0.098 0.088 1.00 0.050 0.089 0.089
1.25 0.071 0.080 0.087 1.25 0.050 0.080 0.083
1.50 0.065 0.093 0.097 1.50 0.054 0.080 0.100
2.00 0.088 0.100 0.098 2.00 0.063 0.092 0.087
5.00 0.076 0.095 0.095 5.00 0.063 0.104 0.106

φ = 0.5 θ l = 256 l = 512 l = 1024 θ l = 256 l = 512 l = 1024
1.00 0.063 0.094 0.097 1.00 0.028 0.075 0.075
1.25 0.069 0.082 0.085 1.25 0.031 0.075 0.078
1.50 0.061 0.092 0.095 1.50 0.030 0.063 0.079
2.00 0.070 0.085 0.091 2.00 0.030 0.079 0.086
5.00 0.065 0.095 0.083 5.00 0.036 0.094 0.079

Table 2 Estimated size of the test (n = 2048) applied to the AR model in (13) with Fréchet distributed
innovations.

φ = 0.0 θ l = 256 l = 512 l = 1024
1.00 0.027 0.099 0.112
1.25 0.048 0.130 0.123
1.50 0.054 0.137 0.122
2.00 0.069 0.135 0.112
5.00 0.097 0.149 0.132

φ = 0.5 θ l = 256 l = 512 l = 1024
1.00 0.036 0.047 0.095
1.25 0.026 0.070 0.106
1.50 0.017 0.080 0.064
2.00 0.029 0.086 0.052
5.00 0.057 0.115 0.056

Tables 3 and 4 show the estimates for the power of the following hypothesis test:

H0 : GX = GY
H1 : GX 6= GY

, (14)

where GX corresponds to time series generated using the AR model in (13) with
error distribution Uniform(0,θ = 1) (or Exponential(θ = 1) or Fréchet(θ = 1)) and
GY corresponds to time series generated by the same model with error distribution
Uniform(0,θ) (or Exponential(θ) or Fréchet(θ)) with θ ≥ 1. As expected, the power
increases as θ increases since the models considered in the null and the alternative
hypothesis behave very different. For largest values of θ , the power approaches 1.
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Table 3 Estimated power of the test (n = 2048) applied to the AR model in (13) with uniformly and
exponentially distributed innovations.

Uniform distribution Exponential distribution
φ = 0.0 θ l = 256 l = 512 l = 1024 θ l = 256 l = 512 l = 1024

1.00 0.062 0.098 0.090 1.00 0.053 0.090 0.088
1.25 1.000 0.998 0.977 1.25 0.209 0.268 0.223
1.50 1.000 1.000 0.999 1.50 0.490 0.518 0.413
2.00 1.000 1.000 1.000 2.00 0.836 0.731 0.544
5.00 1.000 1.000 1.000 5.00 0.867 0.851 0.741

φ = 0.5 θ l = 256 l = 512 l = 1024
1.00 0.063 0.094 0.097 1.00 0.026 0.076 0.075
1.25 0.580 0.523 0.403 1.25 0.135 0.179 0.160
1.50 0.773 0.684 0.545 1.50 0.291 0.294 0.238
2.00 0.814 0.717 0.578 2.00 0.646 0.530 0.357
5.00 0.865 0.774 0.607 5.00 0.716 0.664 0.454

Table 4 Estimated power of the test (n = 2048) applied to the AR model (13) with Fréchet distributed
innovations.

φ = 0.0 θ l = 256 l = 512 l = 1024
1.00 0.028 0.100 0.113
1.25 0.584 0.434 0.401
1.50 0.995 0.924 0.740
2.00 1.000 1.000 0.981
5.00 1.000 1.000 1.000

φ = 0.5 θ l = 256 l = 512 l = 1024
1.00 0.036 0.046 0.095
1.25 0.881 0.787 0.660
1.50 0.999 0.988 0.947
2.00 1.000 1.000 0.998
5.00 1.000 1.000 0.991

4 Application to a real data set

In this section, an empirical application to time series is presented. The data consist of
the daily maximum temperatures observed in each of 17 autonomous communities of
Spain, from 1990 to 2004 (Ceuta and Melilla are autonomous cities and were not con-
sidered in this study). The temperatures exhibit the usual yearly seasonal variation,
although there is no apparent trend across the years. As an example, the temperatures
observed in the Comunidad de Madrid are plotted in Figure 1. The rest of the regions
exhibit similar patterns. Having in mind that the aim of this study is to compare the
largest values of the time series, one of the options is to model the summer periods
and disregard the temperatures recorded in the other seasons of the year. However,
this procedure was not followed here because it jeopardizes the dependence structure
within the series, in the sense that we end up by modeling a set of disjoint summer pe-
riods. Notice that if we consider disjoint summer periods as the complete series then
that series will have a spurious correlation of order equal to a quarter of a year. More-
over, large temperatures might also be observed in late spring and in the first days of
the autumn seasons. An alternatively and more reasonable approach is to consider all
the temperatures that exceed a very high threshold u. As early mentioned, the choice
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of the 90th percentile is very common (see DuMouchel, 1983) and is usually accu-
rate enough. However, the fact that the exceedances are determined irrespectively of
the time period requires that the threshold is slightly raised, otherwise temperature
not so “extreme” might be included. As such, the 95th percentile was chosen instead.
Notice that taking a hight percentile as threshold is almost equivalent to the approach
based on modeling summer periods as proposed by Coles (2001). The P0.95 is also
plotted in Figure 1. A careful analysis of this sample reveals that approximately 97%
of the observations were recorded during summer days and the 3% (7 out of 263) re-
maining were recorded in last days of spring and none was observed in autumn days.
The sample corresponds to approximately 19% of the summer days of the time frame
considered in this study.
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Fig. 1 Daily maximum temperatures observed in the Comunidad de Madrid and the corresponding P0.95

The plots of the sample MEF can also be used for justifying the choice of the
sample 95th percentile. As mentioned before, the threshold should be the tempera-
ture onwards it is reasonable to model the data by a GPD. The plots for the Cantabria,
Comunidad de Madrid and Región Murciana are presented in Figure 2. The thresh-
olds considered are quite reasonable for the first and third regions. In fact, the lin-
earity starts to be evident from the P0.95 onwards. The plot for the Comunidad de
Madrid is very difficult to analyze. Therefore, virtually any high threshold could be
chosen for this data set. The box-plots of the exceedances above the data of each
region, presented in Figure 3, clearly show that Cantabria and Asturias stand out as
the two regions with milder temperatures and Andalucı́a, Castilla La-Mancha and
Extremadura as the most extreme, as would be expected. Table 5 shows the dates
of the consecutive days with temperatures above the threshold for the Comunidad de
Madrid data for 2000-2004. It is clear that half of the groups have size 2 and 79%
have sizes less or equal to 4. The temperatures observed in 2003 were specially high
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Fig. 2 Sample MEF for the daily maximum temperatures for Cantabria (left), the Comunidad de Madrid
(centre) and the Región Murciana (right).

Fig. 3 Box-plot of the exceedances above the 0.95 percentile for each community.

in this community. Table 5 shows that the exceedances above the P0.95 are not in-

Table 5 Sizes of the groups of consecutive hot temperatures for the Comunidad de Madrid sample for
2000-2004 (* hot day = temperature above P0.95).

Beginning Size of group Beginning Size of group
of the period of the period
15-08-2000 3 21-06-2003 2
21-06-2001 4 08-07-2003 5
01-07-2001 2 30-07-2003 9
23-08-2001 2 09-08-2003 7
16-06-2002 2 26-06-2004 6
22-06-2002 2 04-07-2004 2
26-07-2002 4 22-07-2004 4

31-07-2004 2
Year Number of hot days* Year Number of hot days*
2000 9 2003 25
2001 11 2004 15
2002 9

dependent as required by the classical EVT. As previously mentioned the extremal
index, θ , measures the degree of clustering of the large observations. It is generally
estimated by nc/nu, where nc is the number of clusters and nu represents the number
of exceedances above u. The estimates of θ for the 17 communities of Spain obtained
for r = 2,3 and 4 are presented in Table 6. This table also contains the estimates of
the parameters of the GPD, k and σ , estimated by the EPM (see Castillo and Hadi
[5]). The numbers in brackets are the corresponding standard errors computed using
1000 bootstrap samples. The figures presented show that neither the estimates of k
and σ nor the estimates of θ seem to be significantly affected by the different values
of r. Therefore, it was decided to consider r = 2. In this situation, two observations
above the u are considered to belong to different clusters if there are, at least, two con-
secutive observations below u. The estimates of θ represent roughly 2 to 3 very hot
consecutive days. The estimates of k are all negative reflecting underlying light-tailed
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distributions with a finite upper-bound xG < ∞. When attention focuses on estimating

Table 6 Estimates of θ , k and σ for the 17 Spanish communities (standard errors of the estimates between
brackets)

Community u r = 2 r = 3 r = 4
θ̂ k̂ σ̂ θ̂ k̂ σ̂ θ̂ k̂ σ̂

Andalucı́a 394.0 0.295 -0.272 28.1 0.276 -0.256 27.6 0.239 -0.268 28.7
(0.1336) (4.2560) (0.1351) (4.2771) (0.1441) (4.7911)

Aragón 359.1 0.336 -0.244 24.0 0.285 -0.257 25.1 0.234 -0.388 31.9
(0.1712) (3.5106) (0.1877) (4.2721) (0.2071) (4.9889)

Asturias 258.1 0.558 -0.186 30.0 0.496 -0.203 31.4 0.442 -0.234 33.9
(0.0538) (3.2348) (0.0577) (3.6246) (0.0639) (4.0917)

Cantabria 262.0 0.538 -0.103 28.8 0.492 -0.116 30.1 0.455 -0.144 32.3
(0.0730) (3.5278) (0.0778) (3.9763) (0.084) (4.4241)

Cast. La Mancha 375.1 0.303 -0.359 26.6 0.266 -0.406 29.0 0.248 -0.421 29.8
(0.1453) (3.4944) (0.1601) (4.1325) (0.1665) (4.3173)

Cast. y León 344.0 0.312 -0.367 30.2 0.304 -0.346 29.2 0.274 -0.402 32.3
(0.1464) (4.3082) (0.1505) (4.3377) (0.1571) (4.5593)

C. de Madrid 345.0 0.297 -0.436 28.2 0.259 -0.486 30.7 0.232 -0.474 30.4
(0.1046) (4.0121) (0.1065) (4.0892) (0.1217) (4.8604)

C. Valenciana 326.1 0.518 -0.101 25.3 0.442 -0.146 28.6 0.391 -0.146 29.2
(0.0912) (3.0190) (0.0908) (3.4058) (0.1014) (3.8674)

Cataluña 355.0 0.328 -0.356 25.5 0.302 -0.409 28.0 0.240 -0.432 29.5
(0.1349) (3.4756) (0.1438) (3.7703) (0.1597) (4.1525)

Extremadura 376.0 0.335 -0.390 34.0 0.323 -0.408 35.1 0.292 -0.407 35.3
(0.1130) (4.1356) (0.116) (4.3030) (0.1188) (4.2967)

Galicia 344.0 0.377 -0.281 31.7 0.343 -0.321 34.3 0.317 -0.305 33.7
(0.0777) (4.2125) (0.0848) (4.9030) (0.0899) (4.9676)

I. Baleares 314.0 0.453 -0.076 16.5 0.362 -0.128 19.2 0.299 -0.162 21.1
(0.0645) (2.1368) (0.0788) (2.8508) (0.0853) (3.2580)

I. Canarias 306.0 0.474 -0.027 20.0 0.425 -0.041 21.1 0.395 -0.070 22.9
(0.0741) (2.4666) (0.0744) (2.9475) (0.0822) (3.1441)

La Rioja 342.0 0.354 -0.519 36.7 0.300 -0.536 38.0 0.277 -0.535 38.1
(0.0889) (4.7235) (0.1033) (5.4904) (0.1079) (5.7174)

Navarra 330.0 0.409 -0.484 40.0 0.367 -0.502 41.3 0.328 -0.538 43.8
(0.0949) (4.4548) (0.1104) (4.9934) (0.1159) (5.5313)

Paı́s Vasco 314.0 0.522 -0.269 38.3 0.448 -0.314 42.4 0.411 -0.332 44.0
(0.1305) (4.3443) (0.1418) (4.9677) (0.1494) (5.3471)

Reg. Murciana 358.0 0.510 -0.079 24.4 0.432 -0.109 26.8 0.382 -0.102 26.9
(0.1546) (2.9362) (0.1686) (3.7120) (0.1777) (4.0164)

extreme quantiles then the aim is to search for a value x such that P(X > x) = p, for
a fixed and very small probability p. If p = 1/m, then x is exceeded one in every m
observations (m should be a large number). In some occasions it is more interesting
to express the extreme quantiles in terms of N-year return levels. Generally m = nyN,
where ny = 365 is the number of observations per year and N is the number of years.
The extreme quantiles are computed as

xm = u+
σ

k

[
(mτuθ)k−1

]
,

where τuθ is estimated by nc/n, being nc the number of clusters above the threshold u.
Some very extreme quantiles are presented in Table 7. The probabilities presented in
Table 7 represent, approximately, the occurrence of a very hot day once every 50 and
100 years, respectively. The results contained in Table 7 show that, for some commu-
nities, the temperatures that are expected to be exceeded in a time window of 50-years
are very similar to the ones observed for 100-years. Comunidad de Madrid, La Rioja
and Navarra are examples of such situations. In the overall, for the 17 communities,
the average increase in temperature in 50 years is about half degree Celsius. However,
comparing the maximum temperatures (second column in Table 7) observed and the
50−years return level, the average increase is about 1 degree Celsius, which is a con-
siderable augmentation.
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Table 7 N = 50 and N = 100 return levels for the 17 Spanish communities.

Maximum p = 0.000055 p = 0.000027
Autonomous temperature m = 18250 m = 36500
Community observed N = 50 N = 100

Andalucı́a (AND) 466 475 479
Aragón (ARA) 425 433 437
Asturias (AST) 356 369 375

Cantabria (CAN) 374 393 404
Castilla-La Mancha (CLM) 434 439 441

Castilla y León (CyL) 410 416 418
Comunidad de Madrid (MAD) 400 404 405
Comunidad Valenciana (VAL) 425 442 451

Cataluña (CAT) 412 417 419
Extremadura (EXT) 448 454 456

Galicia (GAL) 426 435 439
Islas Baleares (IBA) 380 393 400
Islas Canarias (ICA) 397 418 429

La Rioja (RIO) 406 409 410
Navarra (NAV) 404 408 409

Paı́s Vasco (EUS) 419 429 434
Región Murciana (MUR) 457 476 486

Finally, the proposed testing procedure is applied to test whether their exceedances
distributions are equal or not. In Figure 4, we summarize the results in a dendrogram
based on complete linkage and (1-p)-values as a dissimilarity measure. Notice that the
joins above 0.95 (or above 1− 0.05/136, with 136 representing the total number of
comparisons, if the Bonferroni multiple testing correction is considered) correspond
to a test where the null hypothesis is rejected. This cutoff of 0.95 (or 1−0.05/136) al-
lows to define groups of series having similar distributions. The results using the cut-
off 1-0.05/136 are represented in Figure 5. Four clusters are obtained: (C1) Cantabria
(CAN), Asturias (AST), Paı́s Vasco (EUS) and Navarra (NAV) which have an ex-
ceedances mean of 33.0; (C2) Castilla y León (CyL), Comunidad de Madrid (MAD),
Galicia (GAL) and La Rioja (RIO) with an exceedances mean of 36.3; (C3) Cataluña
(CAT), Extremadura (EXT), Aragón (ARA) and Islas Canarias (ICA) with an ex-
ceedances mean of 37.6; (C4) Andalucı́a (AND), Islas Baleares (IBA), Castilla-La
Mancha (CLM), Comunidad Valenciana (VAL) and Región Murciana (MUR) with
an exceedances mean of 38.7. From Figure 4 and Figure 5, we derive conclusions
that are coherent with the previous descriptive analysis.

5 Conclusions

In this work, a procedure based on subsampling techniques for testing the equality of
GPDs related with the excesses of two stationary time series that may not be consid-
ered independently generated, has been introduced and applied to a set of daily mean
temperature collected at 17 locations in Spain. The clustering results reflect spatial
consistency. Furthermore, the analysis identifies a clear distinction between the four
northeast communities on the shores of the Bay of Biscay and the remaining commu-
nities. A clear distinction is also found between AND, IBA, CLM, VAL and MUR
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Fig. 4 Dendrogram using complete linkage for (1-p)-values associated with comparison test.

Fig. 5 Cluster defined by the similarity of exceedances distributions.

(being the communities exhibiting highest values) from the remaining locations. Be-
yond the analysis of temperatures, the inclusion of covariates into the parameters of
the GPD in a regression-like approach allowing for trends or cycles in the upper tail,
would be also relevant for classification purposes. We might consider the possibility
of also having a time and/or space varying threshold for modeling the largest annual
temperatures (see, for instance, the recent paper by Northrop and Jonathan [34]). This
remains a topic of future research.
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