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Abstract

We present a new way to find clusters in large vectors of time series by
using a measure of similarity between two time series, the generalized cross
correlation. This measure compares the determinant of the correlation
matrix until some lag k of the bivariate vector with those of the two
univariate time series. A matrix of similarities among the series based on
this measure is used as input of a clustering algorithm. The procedure is
automatic, can be applied to large data sets and it is useful to find groups
in Dynamic Factor Models. The cluster method is illustrated with some
Monte Carlo experiments and a real data example.
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1 Introduction

Most procedures for clustering time series look at the similarity of the elements
of a set of times series and build a measure of distance between two series by
using their univariate features. Piccolo (1990) proposed a distance measure for
classifying ARMA models using the autoregressive representation of the process.
Their properties are further studied in Corduas and Piccolo (2008). Xiong and
Yeung (2004) applied a model-based approach using mixtures of autoregressive
moving average (ARMA) models and the EM algorithm to estimate the pa-
rameters. Scotto et al (2011) and D’Urso et al (2017) use the extreme value
behaviour for clustering environmental time series. Liao (2005) surveys the time
series clustering procedures available from the perspective of machine learning.
From the Bayesian approach, Fruhwirth-Schnatter and Kaufmann (2008) build
groups by using finite-mixture models estimated by Bayesian Markov Chain
Monte Carlo simulation methods. Pamminger and Fruhwirth-Schnatter (2010)
developed a model based approach for categorical time series. Also, in the model
based approach, Alonso et al. (2006) and Vilar-Fernández et al (2010) cluster
time series by using the forecast densities. Specific frequency-domain methods
for discrimination and clustering analysis of time series were proposed by Ma-
haraj (2002) and by Caiado et al (2006) or in the fuzzy framework by Maharaj
and D’Urso (2011). Pértega and Vilar (2010) compared several parametric and
nonparametric approaches. Zhang et al (2011) introduced a two step method in
which one-nearest neighbor network is built based on the similarity of time se-
ries with the triangle distance, and second the nodes with high degrees are used
to cluster. Zhang (2013), Sadahiro and Kobayashi (2014) and Aghabozorgi and
Wah (2014) analized methods for high-dimensional time series. Recent surveys
of the field can be found in Aghabozorgi et al (2015) and Caiado et al (2015).
The R library TSclust implements many of the previous mentioned clustering
procedures (see Montero and Vilar, 2014). These methods are useful when we
have independent time series and the objective is to cluster them by similarity
of their univariate models, in a parametric framework, or by similarity of their
periodograms or autocorrelation functions.

For a set of independent realizations of vectors of stationary time series
Kakizawa et al (1998) developed measures of disparity between these vectors
using the Kullback-Leibler and Chernoff information measures and proposed a
spectral approximation to define quasi-distances between the time series. These
measures are then used in a hierarchical, or k-means partitioned, cluster algo-
rithm.

In this article we propose a procedure to cluster time series by their linear
dependency. Our approach is general and nonparametric, as it does not assume
any model for the series, and it is based on the cross-correlation coefficients
between them. Golay et al. (2005) and Douzal-Chouakria and Nagabhushan
(2007) have proposed using variants of the instantaneous cross-correlation, but
their approach take into account the sign of the cross-correlation. Clustering
by dependency has recently been analyzed by Ando and Bai (2016, 2017) as-
suming that the vector of time series is generated by a Dynamic Factor Model
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where some factors affect different groups of series. They propose an iterative
estimation algorithm to find the clusters based on factor model estimation.

The contributions of this article are as follows. We first justify in Section
2 that clustering by similar linear dependency, taking into account the cross
correlations, will produce different results than clustering for similar univari-
ate structure, using the autocorrelations. The main contribution of this article
appears in Section 3, that defines a general measure of linear association be-
tween two time series, the generalized cross correlation (GCC), which has useful
properties for measuring their linear dependency. In particular, it is shown in
Section 4 that is equivalent to using a dynamic version of the mutual informa-
tion between two series. Section 5 derives an objective criterion for the choice of
k, the number of lags to be included in building the GCC, proposes a consistent
estimate of this measure and explains its use for clustering time series. Section
6 illustrates in a Monte Carlo study that the proposed procedure has a good
performance on cross-dependency clustering compared to both some univari-
ate clustering procedures and to the dependency cluster methods proposed by
Douzal-Chouakria and Nagabhushan (2007) and Ando and Bai (2016). Finally,
we apply our procedure to series of electricity prices in Section 7. Some brief
conclusions are presented in Section 8.

2 Univariate versus Bivariate clustering

Suppose two stationary linear processes, yt and xt, which follow a vector ARMA(pb,
qb) model[

φ11(B) φ12(B)
φ21(B) φ22(B)

] [
xt
yt

]
=

[
θ11(B) θ12(B)
θ21(B) θ22(B)

] [
a1t
a2t

]
, (1)

where a1t and a1t are white noise processes with covariance matrix Σa and the
polynomials φij(B) and θij(B) are of the form Aii(B) = 1−a1iiB− . . .−ariiBr
or Aij(B) = −a1ijB − . . . − arijBr. The univariate models for the time series
are

α(B)xt = β1(B)a1t + β2(B)a2t = βx(B)u1t,

and
α(B)yt = β3(B)a1t + β4(B)a2t = βy(B)u2t,

where α(B) = (φ11(B)φ22(B) − φ12(B)φ21(B)) is a polynomial of maximum
order 2pb and βj(B) for j = 1, . . . , 4 are polynomials of maximum order pb + qb.
As the sum of two MA processes that do not have lag cross correlation is another
MA process, the univariate models will be ARMA(pu, qu) with pu ≤ 2pb, and
MA order, qu ≤ pb + qb (see Granger and Morris, 1976). These models will
be, in general, different in both series. For instance, suppose a V AR(1) with
φ11(B) = 1, φ12(B) = 0, φ21(B) = −aB, φ22(B) = 1 − φB. Then xt is white
noise, whereas yt follows an AR(1), if Σa is diagonal, or it follows an ARMA(1,1)
if the noises have contemporaneous correlation.
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Thus, using a cluster method based on similar univariate properties of the
series may classify two series strongly related in different groups, and put to-
gether independent series that follow similar models. These procedure will not
be useful if we want to find cluster of related series, as it is usually the objective
in many applications. A possible strategy for clustering time series could be
to use a two step method. First, the series are clustered by their dependency,
and, second, these more homogeneous clusters can be broken down into new
clusters of similar univariate structure. In this article we will concentrate in
this first stage, the second can be carried out by the procedures discussed in the
Introduction.

3 The generalized cross correlation measure be-
tween two time series

3.1 Definition of the generalized cross correlation measure

We want to define a general measure of linear dependency among two stationary
time series, xt and yt. Suppose that, without loss of generality, the series are
standardized so that E(xt) = E(yt) = 0 and E(x2t ) = E(y2t ) = 1. Call ρxx(h) =
E(xt−hxt) = ρx(h) and ρxy(h) = E(xt−hyt) = ρyx(−h). We assume that the
two series are not deterministic and given any finite vector a = (a1, . . . , ak) and
series Xt,k = (xt, . . . , xt−k), P (a′Xt,k = 0) = 0.

The measure of dependency we search for, C(xt, yt), should verify the fol-
lowing properties: (1) 0 ≤ C(xt, yt) ≤ 1; (2) C(xt, yt) = 1 if and only if there is
an exact linear relationship between the two series; (3) C(xt, yt) = 0 if, and only
if, all the cross correlation coefficients between the two time series are zero; (4)
If both series are white noise and ρxy(h) = 0 for h 6= 0, then C(xt, yt) = ρ2xy(0).

We can summarize the linear dependency at lag h by the matrix

R(h) =

(
ρx(h) ρxy(h)
ρyx(h) ρy(h)

)
(2)

and, in the same way, the linear dependency for lags between 0 and k can be
summarized by putting together the (k + 1) square matrices of dimension two
that describe the dependency at each lag, as

Rk =


R(0) R(1) . . . R(k)

R(−1) R(0) . . . R(k − 1)
...

...
...

...
R(−k + 1) R(−k + 2) . . . R(1)

R(−k) R(−k + 1) . . . R(0)

 . (3)

The matrix Rk is symmetric non negative definite, and it corresponds to the
covariance matrix of the vector stationary process (xt, yt, xt−1, yt−1, . . . , xt−k,
yt−k)′. We can arrange the components of the vector as Zt,2(k+1) = (Y ′t,k, X

′
t,k)′,
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with covariance matrix

Ryx,k =



1 ρy(1) . . . ρy(k) ρxy(0) ρxy(1) . . . ρxy(k)
ρy(1) 1 . . . ρy(k − 1) ρxy(−1) ρxy(0) . . . ρxy(k − 1)
. . . . . . . . . . . . . . . . . . . . . . . .
ρy(k) ρy(k − 1) . . . 1 ρxy(−k) ρxy(−k + 1) . . . ρxy(0)
ρxy(0) ρxy(−1) . . . ρxy(−k) 1 ρx(1) . . . ρx(k)
ρxy(1) ρxy(0) . . . ρxy(−k + 1) ρx(1) 1 . . . ρx(k − 1)
. . . . . . . . . . . . . . . . . . . . . . . .

ρxy(k) ρxy(k − 1) . . . ρxy(0) ρx(k) ρx(k − 1) . . . 1


(4)

=

(
Ryy,k CT

xy,k

Cxy,k Rxx,k

)
, (5)

where Rxx,k is the (k + 1) squared and positive definite covariance matrix of
the standardized vector of series Xt,k = (xt, xt−1, . . . , xt−k)′, Ryy,k corresponds
to Yt,k = (yt, yt−1, . . . , yt−k)′ and Cxy,k include the cross correlations between
both vectors of series. Note that |Ryx,k| = |Rk|. This matrix verifies that (1)
0 ≤ |Ryx,k| ≤ 1, with equality to one holding when Ryx,k is diagonal and the
two series are both serially uncorrelated and not linearly related; (2) |Ryx,k| = 0
when there exists a linear combination a′Zt = 0 so that the series are exactly
linearly related.

We will call total correlation between the two time series, xt and yt, to

TC = 1− |Ryx,k|1/2(k+1)
(6)

which is a measure of the distance of the two series from a bivariate white noise
process, that has TC = 0. A similar measure applied to a single time series
was proposed as a portmanteau test by Peña and Rodŕıguez (2002), and it was
extended as a multivariate portmanteau test by Mahdi and McLeod (2012).
A related statistic based on the determinant of the cross correlation matrix of
the residuals of a VARMA model has been proposed as an independence test
by Robbins and Fisher (2015). However, |Ryx,k| is not a good measure of the
strength of the linear relationship between the two series, because it depends
on both the cross correlations and the autocorrelations of both series. First,
a large value of this determinant does not imply that the series have a weak
relationship or are not linearly related. As

|Ryx,k| = |Rxx,k|
∣∣∣Ryy,k −Cxy,kR

−1
xx,kC

T
xy,k

∣∣∣ , (7)

if Cxy,k = 0, then |Ryx,k| = |Rxx,k| |Ryy,k| which can be very small when the
series have strong autocorrelations. For instance, |Rxx,1| = 1− ρ2x will be very
small if the first autocorrelation coefficient is close to one. Second, although
|Ryx,k| = 0 implies an exact relationship between the two series the opposite is
not true: a small value of this determinant does not imply a strong relationship
between the series. For instance, if |Rxx,k| is very small, because there is strong
autocorrelation, then, by (7), |Ryx,k| will also be small.
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These properties of |Ryx,k| suggests the following alternative similarity mea-
sure

GCC(xt, yt) = 1−
(

|Ryx,k|
|Rxx,k| |Ryy,k|

)1/(k+1)

(8)

= 1−

∣∣∣Ryy,k −Cxy,kR
−1
xx,kC

T
xy,k

∣∣∣1/(k+1)

|Ryy,k|1/(k+1)
. (9)

that we named generalized cross correlation measure, GCC(xt, yt) between two
time series. The measure GCC verifies: (1) GCC(xt, yt) = GCC(yt, xt) and
the measure is symmetric; (2) 0 ≤ GCC(xt, yt) ≤ 1 for Fischer’s inequality (see
Lütkepohl, 1996); (3) GCC(xt, yt) = 1 if and only if there is a perfect linear
dependency among the series and (4) GCC(xt, yt) = 0 if and only if all the cross
correlation coefficients are zero.

To prove (3), as GCC(xt, yt) = 1 implies |Ryx,k| = 0, because the denom-
inator is bounded, and then there is at least a row (column) which is a linear
combinations of the others rows (columns). To prove (4), write GCC(xt, yt) as

GCC(xt, yt) = 1−
∣∣∣∣(R−1xx,k 0xy,k

0yx,k Iyy,k

)(
Rxx,k Cxy,k

CT
xy,k Ryy,k

)(
Ixx,k 0xy,k
0yx,k R−1yy,k

)∣∣∣∣1/(k+1)

(10)

= 1−
∣∣∣∣( Ixx,k R−1xx,kCxy,kR

−1
yy,k

Cxy,k Iyy,k

)∣∣∣∣1/(k+1)

. (11)

By the Hadamard’s inequality, the right hand side determinant is smaller or
equal to 1 and equality is achieved if and only the matrix is diagonal, that is, if
and only if Cxy,k = 0xy,k.

Notice that for k = 0 the GCC(xt, yt) is just the squared correlation coef-
ficient between the two variables. Also, for any k, when both series are white
noise and ρxy(h) 6= 0 for some h 6= 0 and ρxy(j) = 0 for all j 6= h, then
GCC(xt, yt) = ρ2xy(h). In general, for k > 0, we will show in the next section
that the GCC(xt, yt) represents the increase in accuracy in prediction of the
bivariate model with respect to the univariate models and it can be interpreted
as an average squared correlation coefficient when we explain the residuals of
an autoregressive fitting of one variable by the values of the other.

3.2 Interpretation of the generalized cross correlation mea-
sure

In order to understand better this measure note that we can write (see Peña
and Rodŕıguez, 2002)

|Ryx,k| = |Ryx,k,−1|
(
1−R2

1,2k+1(yt/yt−1, . . . , yt−k, X
′
t,k

)
, (12)

where Ryx,k,−1 is the correlation matrix of the vector Zt,2k+1 = (yt−1, . . . , yt−k,
X ′t,k)′, in which we have dropped the first component in Zt,2(k+1), and R2

1,2k+1
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(yt/yt−1, . . . , yt−k, xt, . . . , xt−k) is the square of the multiple correlation coeffi-
cient in the linear fit of the first component of Zt,2(k+1) using as regressors the re-
maining 2k+1 variables. In other words, the notation (yt/yt−1, . . . , yt−k, xt, . . .,

xt−k) denote the regression ŷt =
∑k
j=1 cjyt−j +

∑k
j=0 bjxt−j . By recursive use

of this expression, we have

|Ryx,k| =
∏2(k+1)

i=1
(1−R2

z(i, 2(k + 1)− i)), (13)

where R2
z(i, 2(k + 1) − i) is the multiple correlation coefficient in the regres-

sion of the ith component of the vector Zt,2(k+1) on the remaining 2(k +
1) − i variables, and R2

2(k+1),0 = 0. Note that: (1) for 1 ≤ i ≤ k + 1,

then R2
z(i, 2(k + 1) − i) is the multiple correlation coefficient in the regression

(yt/yt−1, . . . , yt−k+i−1, xt+i−1, . . . , xt−k+i−1) and (2) for k + 2 ≤ i ≤ 2(k + 1)
corresponds to the regression (xt/xt−1, . . ., xt−2(k+1)+i). Define R2

x(i, (k+1)−i)
and R2

y(i, (k + 1) − i) in the same way for i = 1, . . . .k + 1 and note that for
k+2 ≤ i ≤ 2(k+1) then R2

z(i, 2(k+1)−i) = R2
x(j, (k+1)−j) for j = i−(k+1).

We have, for each individual series

|Rxx,k| =
∏k+1

i=1
(1−R2

x(i, k + 1− i)), (14)

Thus, GCC(xt, yt) can be written by (13) and (14) as

GCC(xt, yt) = 1−

(∏k+1
i=1 (1−R2

z(i, 2(k + 1)− i)∏k+1
i=1 (1−R2

y(i, k + 1− i))

)1/(k+1)

(15)

and this coefficient is the ratio between geometric mean of the residual variabil-
ity in the regressions (yt/yt−1, . . . , yt−k+i−1, xt+i−1, . . . , xt+i−k−1) and (yt/yt−1,
. . . , yt−k+i−1). For a given regression we call ESS the explained sum of squares
variation, USS the unexplained sum of squares variation and TSS = ESS+
USS the total sum of squares. Then

(1−R2
z(i, 2(k + 1)− i)

(1−R2
y(i, k + 1− i))

=
USS(i, 2(k + 1)− i)
USS(i, k + 1− i)

= 1−R2
ei/Xt

, (16)

where R2
ei/Xt

is the squared correlation coefficient when (1) we first fit by Least

squares the AR(k− i+1) autoregressive yt−i+1 = φ1yt−i+ . . .+φk−i+1yt−k and

compute the residuals, e
(i)
t−i+1 = yt−i+1− φ̂1yt−i− . . . φ̂k−i+1yt−k; (2) we regress

these residuals e
(i)
t on the vector Xt+i−1,k. Note that in these last regressions

we are using ith lead values of xt, the contemporaneous observations, and k− i
lags of xt. Therefore, we can write

GCC(xt, yt) = 1−
(∏k+1

i=1
(1−R2

ei/Xt
)

)
.
1/(k+1)

(17)

An alternative interpretation of GCC(xt, yt) can be obtained by using |Rk| in-
stead of |Ryx,k| in the definition of (9) and applying the same ideas. It is easy to
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see that we compare now the ratios of 2(k+1) regressions. Half of them are of the
form (xt/xt−1, . . . , xt−k+i−1, yt, . . ., yt+i−k−1) versus (xt/xt−1, . . . , xt−k+i−1),
where we always use the same number of lags for both variables and we al-
ways include in the regression the contemporaneous value of the other variable.
The other half are of the form (yt/yt−1, . . . , yt−k+i−1, xt−1, . . . , xt+i−k−1) ver-
sus (yt/yt−1, . . . , yt−k+i−1), and are similar to the previous ones but now the
contemporaneous value of the regressors variable is not included.

The name generalized cross correlation has been used before in the signal
processing literature to describe an algorithm of maximum likelihood estima-
tion of the time delay between two signals (Knapp and Carter, 1976). For this
reason we have used the name generalized cross correlation measure to differ-
entiate it from the algorithm with the same name but with different objective.
The chosen name relates it to the generalized variance (Anderson, 1984), based
on the determinant of the covariance matrix. This measure is also related to
the effective dependence between two random variables (Peña and Rodŕıguez,
2003). The likelihood ratio test to check that the vector of standardized nor-
mal variables X′k and Y′k are independent assuming multivariate normality is

T log(|R̂xx,k||R̂yy,k|/|R̂yx,k|) (see, for instance, Anderson, 1984), where R̂yx,k

is the estimated obtained by using the sample autocorrelation and cross correla-
tion. This is a sufficient statistic for checking for independence under normality.
Thus, the generalized cross correlation GCC includes all the relevant informa-
tion under normality about the linear dependency among the series.

4 The Generalized Cross Correlation as Dynamic
Mutual Information

Given two continuous random variables, x and y, the mutual information, or
mean information in one about the other is a measure of their joint dependency
(see Kullback, 1968) given by

I(x, y) =

∫ ∫
log

f(x, y)

f(x)f(y)
f(x, y)dxdy,

where f(z) is the density function of z. For univariate normal random variables
it is easy to see that

I(x, y) = −1

2
log(1− ρ2xy), (18)

where ρxy is the correlation coefficient between them. This definition can be
extended in a direct way to vectors of random variables (X,Y ) of dimensions p
and q and we will use the form

I(X,Y ) =

∫
Rp

∫
Rq

log
f(Y/X)

f(Y )
f(X,Y )dXdY (19)
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and if Y = y is a univariate variable and we assume joint multivariate normality
for all we can generalize (18) to

I(y,X) = −1

2
log(1−R2

y/X), (20)

where Ry/X is the multiple correlation coefficient in the regression of y on X.
Suppose now that we take Xt = (xt, . . . , xt−k) and Yt = (yt, . . . , yt−k),

where yt and xt are stationary time series. Then, we define the dynamic mutual
information between the two series as

ID(Xt, Yt) =

∫
Rk

∫
Rk

log
f(yt/yt−1, . . . , yt−k,Xt) . . . f(yt−k/Xt)

f(yt/yt−1, . . . , yt−k) . . . f(yt−k)
f(Xt, Yt),

where ID(Xt, Yt) has the usual properties of I(X,Y ). Assuming multivariate
normality for the joint distribution f(Xt, Yt), and by (20), we can integrate each
term in this equation by∫

Rk

∫
Rk

log
f(yt−h/yt−h−1, . . . , yt−k,Xt)

f(yt−h/yt−h−1, . . . , yt−k)
f(Xt, Yt) = −1

2
log(1−R2

eh/Xt
),

where R2
eh/Xt

is the squared correlation coefficient in the regression of the vari-

able et,h = yt−h −E(yt−h/yt−h−1, . . . , yt−k) on Xt. By recursive application of
this result we conclude that

ID(Xt, Yt) = −1

2

k∑
i=0

log(1−R2
eh/Xt

) = −k + 1

2
log(1−GCC(xt, yt)).

Therefore in the Gaussian case the generalized cross correlation is a monotonic
transformation of the dynamic mutual information between the two series.

5 Clustering time series with the Generalized
Cross Correlations

Given a sample of N stationary time series, in order to apply a cluster procedure
based on the GCC we need to: (i) decide about the value of k, the number of
lags to be used; (ii) estimate the GCC from the data and build a dissimilarity
matrix of the series; (iii) define how to use this matrix to cluster the series. We
will analyze these three problems below.

5.1 Selecting the number of lags k

In some problems we have prior information about the relevant lags to be used.
For instance, suppose we have daily time series and we expect weakly and yearly
seasonality. Then, assuming that the transformation nt = ∇7∇365xt, where
∇axt = xt − xt−a, leads to a set of stationary time series, we expect non zero
autocorrelations at the first lag and also at lags 7th and 365th, as well as in a
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window h around each of these lags for the interaction between the regular and
seasonal part around the seasonal autocorrelation coefficients. That is, we may
include in k a set of lag values as (1, . . . , h), (7−h, . . . , 7+h), (365−h, . . . , 365+h)
for some small value of h.

However, in many applications we do not have prior information about the
number of relevant lags k to be used in computing the GCC. Then, we may
think in this value as a parameter that indicates the largest lag that contains
additional information about both the cross correlations and the autocorrela-
tions of the two series. For a univariate series that follows an ARMA(p, q)
model this lag is the number of autocorrelations coefficients needed to obtain
consistent estimates of the parameters of the model, that is p + q. Given the
values of these autocorrelations the rest are non informative, and we will call
the univariate memory of a linear ARMA(p, q) time series to ku = p+ q.

For a set ofN stationary linear time series that follow univariate ARMA(pi, qi)
models, we define the univariate memory of the system as

UMs = max
1≤i≤N

(pi + qi). (21)

In the same way, the bivariate memory of a pair of time series is the largest lag
of autocorrelations and cross-correlations coefficients with additional informa-
tion about the process. It coincides with the largest lag of the cross correlations
matrices needed to obtained consistent estimates of the parameters of the bi-
variate V ARMA(pb, qb) model, kb = (pb + qb). As it has been shown in Section
2, the univariate models will be ARMA(pu ≤ 2pb, qu ≤ (pb + qb)), where the
exact order depend on the cancellation of roots between the AR and MA parts.
Let us call c the maximum number of roots cancelled in the univariate models,
and assume that pb ≥ qb so that c ≤ pb. Then, the univariate models have
maximum order pu = 2pb − c, qu = (pb + qb)− c, and the univariate memory of
the system formed by the two series will be 3pb + qb − 2c ≥ pb + qb. Thus, the
memory of a bivariate system where pb ≥ qb cannot be larger than the memory
of the univariate series.

As in most real time series pu ≥ qu, which implies pb ≥ qb, we expect that
the maximum univariate memory of the time series will be an upper bound of
the bivariate memory. We define the bivariate memory of the system as the
maximum of the bivariate memory in all possible pairs, and

BM2 = max
1≤i<j≤N

(pij + qij), (22)

where H = N(N − 1)/2 is the number of pairs in the system.
This analysis suggests a feasible way to obtain an upper bound, ku ≥ k,

for the bivariate memory k of the system of N time series. We can fit AR(p)
processes to all the univariate time series, select the order by the BIC criterion,
and take ku = max1≤i≤N (pi).

A lower bound for the bivariate system memory, ku ≤ k, can be computed
by assuming that the set of time series has been generated by a Dynamic Factor
Model, Zt = Pf t + nt, where Zt is a multivariate vector of dimension N , the

10



matrix P is N × r and ft is a vector of factors of dimension r and nt has some
idiosyncratic autocorrelation structure. Note that this is not an important re-
striction as large sets of time series can always be represented by Generalized
Dynamic Factor models (see Hallin and Lippi, 2013). Assuming a contempo-
raneous relationship between the series and the factors, it is well known that
they can be estimated by the common eigenvectors of the lag covariance ma-
trices of Zt, (see, for instance, Peña and Box, 1987) and the number of factors
can be obtained by the test proposed by Lam and Yao (2012). Thus, we can
compute the factors, fit an AR(p) model to each of the factor series selecting
the order pi by the BIC criterion and take kl = max(pi). Then kl is expected
to be a lower bound for the true value. First, note that as zit = χit+nit, where

χit =
r∑
j=1

pijfjt is the common part, if χit follows an ARMA(ai, bi) model, the

observed series zit are expected to be ARMA of higher order, depending on the
model followed by nit. Although some near cancellation of roots are always ex-
pected in these cases in many of the series, the maximum order for the observed
series zit is expected to be larger than the maximum order for the common
parts, and, therefore, the estimation of the order using only the models for the
factors will be a lower bound for the true system order.

If these two estimates lead to the same value of k = ku = kl, we stop.
Otherwise, we check values of k in the interval (kl, k

u) assuming that the two
series zt = (xt, yt)

′ are related by a vector VAR(p) model, where kl ≤ p ≤ ku.
We use VAR models to avoid the problem of cancellation of operators in the
bivariate systems that makes the estimation slower and more complicated. We
fit models with orders between the bounds and select the order by the BIC
criterion. Calling kxy = p the memory order of the pair of time series, the
bivariate memory system is

k = max
1≤i<j≤N

(kij). (23)

However, this approach requires to fitH = N(N−1)/2 bivariate VAR models

for each order p. As a VAR(k) model Φk(B)zt= at with Σa= PΛP
′

where

P
′
P = I and Λ is diagonal can be written in the structural form P

′
Φk(B)zt= εt,

with Σε= Λ, a faster approach to estimate this model is by fitting the regressions

ẑ1,t =

k∑
j=1

cjz1,t−j +

k∑
j=0

bjz2,t−j (24)

for kl ≤ k ≤ ku, and choose the value k∗ that minimizes the BIC criterion. This
procedure provides consistent estimates of the parameters (see section 10.1 of
Hamilton, 1994) and, therefore, of the value of k. This equation could also be
estimated by Lasso, (Tibshirani, 1996) searching for a sparse solution, but this
will increase the computational cost without clear advantages. Note that for
each pair two values of k are obtained for the two dependent variables in the
regression and the largest is a consistent estimate of the memory order for this
pair. If the set of series is very large, we can take samples of pairs of series to
estimate the bivariate memory of the system.
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5.2 Estimating the generalized cross correlation

The generalized cross correlation for each pair of time series will be estimated by
the sample correlation matrices. The almost sure consistency of these matrices
holds for second–order stationary and ergodic processes under mild conditions

(see, for instance, Theorem 6 in Chapter IV of Hannan, 1970). Since ĜCC is a

continuous function of R̂RRXXX (i), R̂RRXXX (j) and R̂RRXXX (i,j), a Slutsky’s theorem argument
implies the consistency of this estimator (see, for instance, Theorems 18.8 and
18.10 of Davidson, 1994).

The estimators ĜCC(Xi, Xj), will be obtained for all pairs (i, j) with i 6= j
to construct the following N ×N dissimilarity matrix

DMDMDM
ĜCC

=


0 1− ĜCC(X1, X2) . . . 1− ĜCC(X1, XN )

1− ĜCC(X2, X1) 0 . . . 1− ĜCC(X2, XN )
...

...
. . .

...

1− ĜCC(XN , X1) 1− ĜCC(XN , X2) . . . 0

 ,

(25)

where the elements of this matrix are defined as 1 − ĜCC(Xi, Xj) in order to
have small dissimilarity when the series are highly dependent and high values
of dissimilarity when the series are independent.

5.3 Selecting a cluster procedure

The dissimilarity matrix (25) can be used in any cluster procedure which re-
quires this kind of input. If the number of series is not very large we can apply
hierarchical clustering with single linkage (also known as nearest neighbor clus-
tering) since it allows us to find some interesting dependence structures. For
instance, the chained structure, that is, a structure where series Xi is related to
series Xi+1 but it is independent to series Xi+2 for i ≥ 1. Figure 1(a) illustrates
this situation, that is, the series 1 - 10 have a chained dependence structure.
For simplicity, lets assume that we have three series having chained dependence
structure. Once the closest pair of series is selected, then the remaining series
will be close to one of the series in the pair but far away from the other series.
However, the distance (dissimilarity) calculated by single linkage between the
remaining series and the pair is small and this series will be close to the pair of
series. Of course, other linkage schemes can be used depending on the depen-
dence structure more likely for the data or we may try different approaches and
select the one that provides the most interesting solution. In some applications,
we may want to detect only highly cross-correlated groups of time series and,
in that case, complete linkage could be the appropriate choice.

When the number of series is large we can apply multidimensional scaling to
the N ×N matrix (25) and obtain a new N ×p matrix where p is the number of
principal coordinates selected as variables, and usually p is much smaller than
N . Then we can input these matrix in a cluster algorithm based on this sort of
input.
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6 Some Monte Carlo experiments on clustering
time series

In this section, we develop several Monte Carlo experiments to evaluate the
performance of the proposed similarity measures. In subsection 6.1 we show the
results for scenarios where the series are cross-dependent, and in subsection 6.2
we present the results for scenarios where the series follow factorial models as
in Ando and Bai (2016).

In the comparison we have also introduced as a reference three univari-
ate measures based on autocorrelations as the QAC (Quantile autocovariances,
Lafuente-Rego and Vilar, 2015), the distance between sample autocorrelation
coefficients, SAC, and the distance between partial autocorrelation coefficients,
PAC. It should be notice that these methods provide a hard partition of the
set of time series, but soft (fuzzy) versions are available at D’Urso and Maharaj
(2009) and Vilar et al (2018). They are compared with two bivariate measures
TC(xt, yt) defined in (6), GCC(xt, yt) given in (9), the Douzal-Chouakria and
Nagabhushan (2007) dissimilarity measure (denoted by DCN) and the Ando and
Bai (2016) clustering procedure (denoted by ABC). The series are clustered for
each measure by a hierarchical clustering algorithm with the single, complete
and average linkages.

6.1 Cross-dependent scenarios

In this section, we consider groups of dependent series and the main goal is to
cluster them by their cross-dependence. We consider a set of fifteen time series
generated by the model xi,t = φixi,t−1 + εi,t where for i = 1, 2, . . . , 5 we have
φi = 0.9, and for i = 6, 7, . . . , 15, we have φi = 0.2. Thus, from the univari-
ate structure we have two clear groups. We introduce the cross dependency
through the innovations εi,t, which are Gaussian white noise variables but with
a dependence structure ρ(i, j) = E(εi,t, εj,t) which depends on the Scenario.
Five scenarios are defined by indicating the non null cross-correlations. All the
other possible cross correlations are assumed to be zero.

1. Scenario S.1: ρ(i, i+ 1) = .5 for i = 1, . . . , 9.

2. Scenario S.2: ρ(i, i + 1) = .5 for i = 1, . . . , 9, and ρ(i, i + 1) = .5 for
i = 11, . . . , 14.

3. Scenario S.3: ρ(i, j) = .9 for i = 1, . . . , 9 and j = i+ 1, . . . , 10.

4. Scenario S.4: ρ(i, j) = .9 for i = 1, . . . , 9 and j = i + 1, . . . , 10, and
ρ(i, i+ 1) = 0.5 for i = 11, . . . , 14.

5. Scenario S.5: ρ(i, j) = .9 for i = 1, . . . , 9 and j = i + 1, . . . , 10, and for
i = 11, . . . , 14 and j = i+ 1, . . . , 15.

Figure 1 illustrates these five scenarios, where the series are represented as
points in an ellipse. A line connecting two points means that there exits non
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Figure 1: Dependence structure representation. The series are represented as
points in the ellipse. A line connecting two points means that there exits non
null cross correlation between these two series.

null cross correlation between these two series. For instance, in scenario S.1,
represented in Figure 1(a), the first ten series are cross correlated whereas the
last five are independent. The Figure shows that scenarios S.2, S.4 and S.5 have
two groups of dependent time series, whereas scenarios S.1 and S.3 have one
group of dependent time series and five independent time series. A clustering
for dependency should lead then to a two-cluster solution for scenarios S.2, S.4
and S.5 and a six-clusters solution for scenarios S.1 and S.3.

For the comparison of the clustering results, we will consider three measures:
(1) the adjusted Rand index, ARI, which is based on counting pairs (see Hubert
and Arabie, 1985); (2) F-measure which is based on sets overlaps (see Larsen
and Aone, 1999) and (3) the variation of information, VI, which is based on
mutual information (see, Meilă, 2007). The results obtained with the three
measures are similar and we will report here those obtained by using the ARI
measure. The results obtained with the F-measure and VI are available upon
request to the authors. These measures assume known the “true clusters”. It
should be notice that there is no generally accepted definition of what the “true
clusters” are and this depends on the requirements of the situation, see, e.g.,
Hennig (2015). In our simulation experiments, we consider the groups of series

14



Table 1: Clustering performance evaluation (Adjusted Rand Index) at scenarios
S.1 – S.5, T = 100.

Method Scenario S.1 Scenario S.2 Scenario S.3 Scenario S.4 Scenario S.5
QAC single 0.025 0.044 0.217 0.045 0.045
SAC single 0.010 0.045 0.187 0.045 0.045
PAC single -0.011 0.045 0.194 0.045 0.045
DCN single 0.692 0.501 1.000 0.973 1.000
TC single 0.253 0.038 1.000 0.132 0.992
GCC single 0.945 0.894 1.000 0.988 1.000
QAC complete 0.040 0.045 0.185 0.045 0.046
SAC complete 0.033 0.045 0.175 0.045 0.045
PAC complete 0.026 0.045 0.177 0.045 0.045
DCN complete 0.054 0.003 0.998 0.841 1.000
TC complete 0.312 0.176 1.000 0.592 1.000
GCC complete 0.084 0.103 1.000 0.676 1.000
QAC average 0.044 0.045 0.218 0.044 0.046
SAC average 0.031 0.045 0.188 0.045 0.045
PAC average 0.018 0.045 0.192 0.045 0.045
DCN average 0.058 0.043 0.998 0.652 1.000
TC average 0.612 0.095 1.000 0.204 1.000
GCC average 0.371 0.614 1.000 0.951 1.000
PAM - TC 0.553 0.035 0.386 0.059 1.000
PAM - GCC 0.092 0.111 0.999 0.712 1.000
ABC - 0.002 - 0.228 0.555

that have some linear dependency as “true clusters”, that is, the series that
have non null cross correlation.

In Tables 1 and 2, we report the means of the ARI measure from 1000
replicates for these five scenarios when T = 100 and 200, respectively. Seven
clustering measures are compared: The first three, QAC, SAC and PAC only
use univariate information whereas the last four, DCN, TC, GCC and ABC use
the bivariate dependency between the series. The number of lags, k, for the
methods SAC, PAC, TC and GCC was selected using the procedure described
in Section 5. In Tables 3 and 4, we report the frequencies of the selected k as
well as the percentage of times where ku = kl. In method QAC, we use the
tuning parameters suggested in Lafuente-Rego and Vilar, (2015). In method
DCN, we use the tuning parameter suggested in Montero and Vilar (2014). For
method ABC, we assume that each group can be modelled by an unifactorial
model. Of course, these scenarios are strongly challenging for Ando and Bai
approach since the number of series is small and the procedure relies on a k-
means algorithm. In particular, k-means cannot find six clusters in scenarios
S.1 and S.3, and provides solutions with empty clusters.

The results of the three univariate methods are very similar across scenarios
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Table 2: Clustering performance evaluation (Adjusted Rand Index) at scenarios
S.1 – S.5, T = 200.

Method Scenario S.1 Scenario S.2 Scenario S.3 Scenario S.4 Scenario S.5
QAC single 0.024 0.045 0.205 0.045 0.045
SAC single 0.026 0.045 0.189 0.045 0.045
PAC single 0.011 0.045 0.190 0.045 0.045
DCN single 0.972 0.951 1.000 0.999 1.000
TC single 0.257 0.034 1.000 0.132 0.996
GCC single 1.000 1.000 1.000 1.000 1.000
QAC complete 0.043 0.045 0.177 0.045 0.045
SAC complete 0.043 0.045 0.171 0.045 0.045
PAC complete 0.040 0.045 0.171 0.045 0.045
DCN complete 0.061 0.017 1.000 0.830 1.000
TC complete 0.311 0.146 1.000 0.560 1.000
GCC complete 0.090 0.108 1.000 0.682 1.000
QAC average 0.046 0.045 0.207 0.045 0.045
SAC average 0.042 0.045 0.184 0.045 0.045
PAC average 0.036 0.045 0.187 0.045 0.045
DCN average 0.065 0.042 1.000 0.649 1.000
TC average 0.810 0.124 1.000 0.208 1.000
GCC average 0.502 0.921 1.000 0.998 1.000
PAM - TC 0.681 0.013 0.382 0.045 1.000
PAM - GCC 0.083 0.108 1.000 0.713 1.000
ABC - 0.000 - 0.167 0.511

Table 3: Frequency of selected k at scenarios S.1 – S.5, T = 100.

Selected k Scenario S.1 Scenario S.2 Scenario S.3 Scenario S.4 Scenario S.5
1 59.00% 60.90% 70.30% 72.20% 74.50%
2 30.30% 28.90% 21.50% 19.60% 19.40%
3 7.20% 7.90% 5.60% 6.10% 4.00%
4 2.70% 1.60% 2.30% 1.50% 1.70%
5 0.80% 0.70% 0.30% 0.60% 0.40%
ku = kl 59.80% 60.90% 69.60% 68.50% 73.90%

Table 4: Frequency of selected k at scenarios S.1 – S.5, T = 100.

Selected k Scenario S.1 Scenario S.2 Scenario S.3 Scenario S.4 Scenario S.5
1 71.10% 69.00% 79.20% 79.50% 81.40%
2 24.10% 25.90% 16.90% 16.90% 14.70%
3 3.70% 3.90% 3.30% 3.00% 2.90%
4 0.80% 1.10% 0.60% 0.50% 0.70%
5 0.30% 0.10% 0.00% 0.10% 0.30%
ku = kl 69.80% 68.60% 69.90% 67.50% 71.50%
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and linkage, as expected. Also, they do not improve with the sample size.
This is an expectable result since the univariate methods are not designed for
cross-dependency clustering.

The selected number of lags, k, was 1 or 2 in around 90% of the replicates.
The percentage of times where ku = kl was in the range 59.80% – 73.90%, which
produces a low computational cost due the estimation of regressions (24).

The multivariate measures, TC and GCC, have similar performance at the
scenarios S.3 and S.5 where there one or two strongly related groups of series.
But, the measure TC fails to find the clusters at scenarios S.1, S.2 and S.4
where there is a chained dependence structure. Figure 2 shows an example of
the dendrograms obtained using measures TC and GCC for the first scenario.
The groups or the independent series at scenario S.1 are clearly distinguishable
in the dendrogram based on GCC. But, we observe that TC is not able to
distinguish between the groups of series 6–10 and the group of series 11–15 at
scenario S.1. Similar graphs are obtained for the other scenarios where there is
a chained dependence, S.2 and S.4. The measure DCN obtains better results
than TC at scenarios S.1, S.2 and S.4 but it is improved by GCC. It should be
noticed that DCN takes into account the sign of the cross-correlation, that is,
it consider that two positive correlated time series are closer than two negative
correlated time series. This feature does not have impact in scenarios S.1 – S.5
since all non-null cross-correlation are positive but it will determine the behavior
of DCN in the factor model scenarios at subsection 6.2.

Also, we observe that complete and average linkages fail to find the clusters
in scenarios S.1 and S.2. The complete linkage also fails in scenario S.4. This
situation is due to the chain structure of some of the clusters in scenarios S.1,
S.2 and S.4. For instance, in the scenario S.1, once the first pair of series is
considered as a cluster in the hierarchy then the remaining series will be far
away from, at least, one series in this pair. Thus, the farthest neighbour will
be far away from this pair. The same argument applies to average linkage
although we observe that average linkage is better than complete. In the case of
partitioning around medoids procedures, PAM-TC and PAM-GCC, we observe
a similar behaviour to average linkage. It should be noticed that there is not a
clear medoid in a chained dependence structure.

The proposed measure, the generalized cross-correlation, GCC, with single
linkage identifies the related series as well as the independent series and as
expected, it improves with the sample size. At scenario S.5, the ABC have a
reasonable result since the strong dependence can be assimilated to a factor
model. However, it is outperformed by GCC.

6.2 Factor Model scenarios

In this section, we consider three scenarios proposed by Ando and Bai (2016).
These scenarios use a dynamic factor model (DFM) with grouped factor struc-
ture as data generating process. They consider three groups, each one with
three group-specific factors, r1 = r2 = r3 = 3, and the same number of elements
N1 = N2 = N3. In their simulation study, N was 300 and 600, and T was 100
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Figure 2: Example of dendrograms (using single linkage) for scenario S.1 ob-
tained with TC and GCC measures.

and 200. The DFM can be expressed as

yi,t = xxx′itβββ + fff ′gi,tλλλgi,i + εi,t, i = 1, 2, . . . , N, t = 1, 2, . . . , T, (26)

where G = {g1, g2, g3} denotes the group membership, Nj is the number of
elements of group j, j = {1, 2, 3}, xxxit is a p × 1 vector of observable variables
and fffgi,t is an rj × 1 vector of unobservable group-specific factors. The rj
dimensional factor of group j is a vector of Gaussian random variables having
mean equal to j and unit variances, and the factors loading follows a N(0, j).
The vector of observed variables, xxxi, has dimension 80×1 but only the first three
variables are relevant since the parameter βββ was set as βββ = (1, 2, 3, 0, 0, . . . , 0)′.

In model (26), the p× 1 vector of coefficients, βββ, is assumed constant across
group. Although Ando and Bai (2016) also consider group dependent coefficients
the case of constant βββ is a more challenging case when we are interested in finding
groups. In this paper, we concentrate our attention on this case.

The three scenarios assume that time series are obtained by model (26), but
differ in the properties of the errors, εi,t :

1. Scenario F.1: The errors terms, εi,t, are assumed standard Gaussian.
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2. Scenario F.2: The errors are assumed heteroscedastic and have some cross-
sectional dependence. In particular, εi,t = 0.9ε1i,t + δtε

2
i,t, where δt = 1

if t is odd and zero otherwise, and the vectors εεε1 = (ε11,t, ε
1
2,t, . . . , ε

1
N,t)

′

and εεε2 = (ε21,t, ε
2
2,t, . . . , ε

2
N,t)

′ follows a multivariate Gaussian distribution

with mean 000 and covariance matrix ΣΣΣ = (σi,j) with σi,j = 0.3|i−j|.

3. Scenario F.3: The errors have serial and cross-sectional dependence. In
particular, εi,t = 0.2εi,t−1 + ei,j where the vector eeet = (e1,t, e2,t, . . . , eN,t)

′

follows a multivariate Gaussian distribution with mean 000 and covariance
matrix ΣΣΣ = (σi,j) with σi,j = 0.3|i−j|.

Tables 5 and 6 report the means of the ARI measure from 1000 replicates
for these three scenarios when N = 300 and T = 100 and 200 and Tables
7 and 8 for N = 600 and T = 100 and 200, respectively. Additionally, the
Tables 9–12 provides information on selected k as well as the percentage of times
where ku = kl. In these scenarios, the selected number of lags, k, concentrates
in the range 1–3 when T = 100 and in the range 0–2 when T = 200. The
percentage of times where ku = kl was very low, which produces a moderate-
hight computational cost due the estimation of regressions (24). It should be
notice that we are estimating, at least, 89700 regressions when N = 300 (359400
regressions when N = 300). The k selection step takes around 20.5 seconds
when N = 300 (82.2 seconds when N = 600) for each replicate using a personal
computer with an Intel(R) Core(TM) i7 CPU 920 2.67GHz processor.

The three univariate measures have a poor performance on dependency clus-
tering, as expected, since all series have the same autocorrelation structures.
Also, as expected, their behavior do not improve with the sample size. The
DCN measure also have a poor performance on dependency clustering. Here,
we should to realize that DCN procedure considers two time series that are
negatively correlated away. This is the case, for instance, when the factor load-
ings, λλλgi,i, in model (26) have different sign than the factor loading, λλλgi′ ,i′ with
gi = gi′ , that is, the ith and i′th series belong to the same group but DCN con-
cludes that they are far away. As in the case of univariate measure, it should
be noticed that DCN is not designed for cross-dependency clustering.

The proposed measure GCC (with single and average linkages) has an almost
perfect classification when T = 200. The GCC-single, GCC-average and PAM-
GCC outperform ABC. It is surprising that they work better than ABC, as
scenarios F.1 – F.3 satisfy the required conditions for the ABC and the method
use an iterative sophisticated estimation procedure. This result suggests that if
we modify the clustering procedure built in the ABC procedure, that is, instead
of clustering by a k-means algorithm applied to the estimated loadings we use
the GCC measure the procedure will improve. To confirm this intuition, we
perform an additional exercise where we run the full procedure proposed by
Ando and Bai (2016) by now the initial clustering solution was obtained by the
GCC-single, as proposed in this paper. We denote this procedure by ABC-GCC
and the results are given in Tables 5–8. It is clear the improvement obtained
by the new measure.
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Table 5: Clustering performance evaluation (Adjusted Rand Index) at scenarios
F.1 – F.3, T = 100 and N1 = N2 = N3 = 100.

Method Scenario F.1 Scenario F.2 Scenario F.3
QAC single 0.000 0.000 0.000
SAC single 0.001 0.001 0.001
PAC single 0.002 0.001 0.001
DCN single 0.000 0.000 0.000
TC single 0.962 0.946 0.969
GCC single 0.969 0.952 0.964
QAC complete 0.046 0.046 0.045
SAC complete 0.116 0.116 0.111
PAC complete 0.113 0.117 0.113
DCN complete 0.033 0.034 0.032
TC complete 0.362 0.359 0.351
GCC complete 0.312 0.309 0.306
QAC average 0.024 0.023 0.026
SAC average 0.102 0.095 0.096
PAC average 0.102 0.097 0.096
DCN average 0.020 0.020 0.020
TC average 0.992 0.988 0.996
GCC average 0.993 0.992 0.993
PAM - TC 0.837 0.821 0.819
PAM - GCC 0.912 0.908 0.912
ABC 0.876 0.877 0.868
ABC - GCC 0.991 0.990 0.990
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Table 6: Clustering performance evaluation (Adjusted Rand Index) at scenarios
F.1 – F.3, T = 200 and N1 = N2 = N3 = 100.

Method Scenario F.1 Scenario F.2 Scenario F.3
QAC single 0.000 0.000 0.000
SAC single 0.002 0.002 0.002
PAC single 0.002 0.002 0.002
DCN single 0.000 0.000 0.000
TC single 0.991 0.990 0.994
GCC single 0.993 0.990 0.991
QAC complete 0.043 0.043 0.043
SAC complete 0.098 0.094 0.094
PAC complete 0.098 0.096 0.094
DCN complete 0.035 0.037 0.034
TC complete 0.392 0.409 0.400
GCC complete 0.345 0.358 0.356
QAC average 0.023 0.021 0.021
SAC average 0.090 0.087 0.080
PAC average 0.089 0.084 0.079
DCN average 0.022 0.022 0.021
TC average 0.998 0.997 1.000
GCC average 0.997 0.998 0.998
PAM - TC 0.978 0.976 0.969
PAM - GCC 0.988 0.986 0.987
ABC 0.887 0.900 0.881
ABC - GCC 0.999 0.999 0.997
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Table 7: Clustering performance evaluation (Adjusted Rand Index) at scenarios
F.1 – F.3, T = 100 and N1 = N2 = N3 = 200.

Method Scenario F.1 Scenario F.2 Scenario F.3
QAC single 0.000 0.000 0.000
SAC single 0.000 0.001 0.000
PAC single 0.000 0.000 0.000
DCN single 0.000 0.000 0.000
TC single 0.915 0.901 0.937
GCC single 0.920 0.910 0.934
QAC complete 0.044 0.042 0.043
SAC complete 0.117 0.117 0.116
PAC complete 0.119 0.119 0.116
DCN complete 0.029 0.031 0.028
TC complete 0.360 0.360 0.368
GCC complete 0.302 0.313 0.316
QAC average 0.019 0.019 0.020
SAC average 0.097 0.095 0.089
PAC average 0.100 0.093 0.092
DCN average 0.018 0.018 0.017
TC average 0.983 0.974 0.992
GCC average 0.989 0.983 0.987
PAM - TC 0.802 0.785 0.780
PAM - GCC 0.912 0.907 0.908
ABC 0.880 0.886 0.884
ABC - GCC 0.991 0.991 0.993
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Table 8: Clustering performance evaluation (Adjusted Rand Index) at scenarios
F.1 – F.3, T = 200 and N1 = N2 = N3 = 200.

Method Scenario F.1 Scenario F.2 Scenario F.3
QAC single 0.000 0.000 0.000
SAC single 0.000 0.000 0.000
PAC single 0.000 0.000 0.000
DCN single 0.000 0.000 0.000
TC single 0.980 0.973 0.987
GCC single 0.982 0.974 0.980
QAC complete 0.047 0.046 0.045
SAC complete 0.106 0.107 0.103
PAC complete 0.107 0.104 0.102
DCN complete 0.032 0.034 0.031
TC complete 0.379 0.385 0.371
GCC complete 0.331 0.346 0.324
QAC average 0.022 0.019 0.020
SAC average 0.097 0.096 0.083
PAC average 0.096 0.096 0.083
DCN average 0.019 0.019 0.018
TC average 0.996 0.995 0.999
GCC average 0.997 0.997 0.997
PAM - TC 0.971 0.967 0.956
PAM - GCC 0.989 0.987 0.989
ABC 0.893 0.906 0.882
ABC - GCC 0.996 0.997 1.000

Table 9: Frequency of selected k at scenarios F.1 – F.3, T = 100 and N1 =
N2 = N3 = 100.

Selected k Scenario F.1 Scenario F.2 Scenario F.3
0 4.70% 5.20% 3.10%
1 34.70% 31.40% 34.40%
2 38.40% 37.40% 37.20%
3 16.60% 20.40% 19.20%
4 4.70% 4.90% 5.50%
5 0.90% 0.70% 0.60%
ku = kl 4.40% 4.20% 4.40%
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Table 10: Frequency of selected k at scenarios F.1 – F.3, T = 200 and N1 =
N2 = N3 = 100.

Selected k Scenario F.1 Scenario F.2 Scenario F.3
0 16.50% 15.80% 6.70%
1 53.60% 55.80% 58.60%
2 26.40% 24.50% 26.70%
3 3.40% 3.30% 7.60%
4 0.10% 0.60% 0.40%
5 0.00% 0.00% 0.00%
ku = kl 3.20% 3.50% 3.00%

Table 11: Frequency of selected k at scenarios F.1 – F.3, T = 100 and N1 =
N2 = N3 = 200.

Selected k Scenario F.1 Scenario F.2 Scenario F.3
0 1.90% 1.60% 0.50%
1 28.20% 25.10% 27.20%
2 35.50% 35.70% 34.80%
3 23.50% 25.50% 23.00%
4 9.10% 10.60% 12.20%
5 1.80% 1.50% 2.30%
ku = kl 3.60% 2.80% 3.50%

Table 12: Frequency of selected k at scenarios F.1 – F.3, T = 200 and N1 =
N2 = N3 = 200.

Selected k Scenario F.1 Scenario F.2 Scenario F.3
0 9.90% 7.20% 2.20%
1 49.30% 50.00% 55.80%
2 32.80% 34.20% 28.80%
3 7.10% 7.50% 10.30%
4 0.90% 1.00% 2.80%
5 0.00% 0.10% 0.10%
ku = kl 3.70% 3.90% 3.20%
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Note that both GCC and ABC improve their performance when T increases,
and ABC also improve when N increases since the estimation method used in
ABC benefits from a large number of series. GCC is slightly affected by the
increase of N but this effect disappears when T increases. Essentially, GCC
have comparable results with respect to ABC without using the information
about the data generating model. The best results are obtained with ABC-
GCC which combines a better starting point provided by the GCC and the use
of a model-driven approach.

7 Clustering Electricity Prices

In this section, we consider a set of time series of hourly day-ahead prices for the
New England electric market from January 2004 to December 2016. The data set
is available at www.iso-ne.com. The New England region is divided in eight load
zones: Connecticut (CT), Maine (ME), New Hampshire (NH), Rhode Island
(RI), Vermont (VT), Northeastern Massachusetts and Boston (NEMA), South-
eastern Massachusetts (SEMA) and Western/Central Massachusetts (WCMA).
Each of the time series corresponds to the price of electricity in one of the eight
regions at one of the 24 hours at a given weekday. For example, the first se-
ries corresponds to the price of electricity of the hour 1:00, on Thursday (since
01/01/2004 was Thursday), in the first region. Thus, we have 24x7x8=1344 time
series of length 678 weeks. Notice that we have 365 (or 366) days each year for
13 years, making a total of 4749 days which are approximately 678 weeks. As
an example, in Figure 3, we represent the series of prices corresponding to hour
12th of Thursdays for the eight load zones and the aggregated load zone. We
observed a common pattern in the evolution of these series.

7.1 Analysis of the aggregated zone series

In this section, we will study the 24x7=168 series corresponding to the aggre-
gated zone. The analysis of this small data set will provide us some insights
with respect to the larger one with 1344 series corresponding to the eight load
zones, that will analyzed next. First, we take a “regular” difference of the series:

Xd,h(w) = logPd,h(w)− logPd,h(w − 1),

where Pd,h(w) denotes the price at weekday d, hour h, and week w with d =
1, 2, . . . , 7, h = 1, 2, . . . , 24, and w = 2, 3, . . . , 678. Notice that a “regular”
difference in these series corresponds to a weekly seasonal difference in daily
time series. It is well known that electricity price series have a strong weakly
seasonality (see Garćıa-Martos and Conejo, 2013) and this transformation will
produce stationary time series. Some authors have argued that the electricity
prices series exhibit a long memory behaviour (see, for instance, Koopman et
al, 2007) but, to simplify the example, we do not explore this possibility and
assume that the series Xd,h are stationary.
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Figure 3: Prices at 12:00 on Thursdays for the eight load regions and the aggre-
gated load zone of ISO New England market from January 2004 to December
2016.

A hierarchical clustering procedure (single linkage) using the GCC measure
to the 168 series, Xd,h, gives the dendrogram presented in Figure 5. In this
case, the selected number of lags was k = 9 (kl = 7, ku = 9 and the maximum
considered lag was 35). This figure shows clear groups associated by the same
weekday. This is to be expected, since the 24 hourly prices of a given day are
simultaneously fixed in the daily market, producing a high cross-dependency.
On the other hand, the univariate clustering and DCN procedures fails to detect
this structure and make groups which are not related to the weekday. The
adjusted Rand index for a seven clusters solution using QAC, SAC, PAC, DCN
and GCC were 0.000, 0.002, 0.000, 0.225 and 0.819, respectively.

The number of clusters are selected by the Silhouette statistics (Rousseeuw,
1987) and the GAP procedure (Tibshirani et al, 2001) and both lead to 13 clus-
ters (see Figure 4). It should be noted that the Silhouette statistic is more con-
clusive than the GAP statistic, since the latter increases again after 19 clusters.
As mentioned in Tibshirani et al (2001), this could suggest 13 well-separated
clusters and more less-separated ones. These clusters result from the fact that
the procedure first divides by day of the week (weekday) and second each day is
split into sleeping and awake hours: (i) sleeping hours, 01th-06th (or 01th-07th
on weekend), and (ii) awake hours, 07th-24th (08th to 24th on weekend). It
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should be noticed that a series in a cluster is not necessarily independent to the
series in another cluster. For instance, the series corresponding to hour 01th is
not independent of series of hour 24th but since they are in different clusters,
we can infer that the dependence between the series of hour 01th with, at least,
one series in the set of hours 02th-06th is higher than the dependence between
the series of hours 01th and 24th.
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Figure 4: Silhouette and GAP statistics. Dataset of 168 series from aggregated
load zone.

In order to gain insight on the obtained clusters, we will represent the set of
time series as points in an ellipsoid graph where the nodes represent individual
series and an edge between two nodes indicates strong cross-correlations as
measured by a large value of the GCC measure (see Figure 6). That is, an edge
between nodes i and j appears if GCC(Xi, Xj) is bigger than a given threshold.
The threshold used to obtain Figure 6 is based on the dendrogram in Figure 5. In
particular, we select the cutoff threshold, 0.162, such that the series are divided
into two groups. In Figure 6, we observed that the “sleeping hour” cluster
exhibits an strong dependency, that is, all hours appear to be connected. Also,
for the “awake hours” cluster we observed strong dependency among the series
of hours from 10th to 22th but the dependencies decrease at the the hours at the
frontiers of this cluster, that is the series corresponding to 07th–09th (08th–09th
during weekend) and 23th–24th, that is, these series appear to have a chained
dependence structure. Moreover, we observe that these dependencies change
across the different days. This graph provides complementary information to
the hierarchical structure of the dendrogram since it visualizes the dependencies
between the series in the group.
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Figure 5: Dendrogram obtained with the regular differentiated series, Xd,h, of
the aggregated zone.
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Although the simulation experiments suggest that single linkage is preferable
in presence of chained dependence structure, we also consider the complete and
the average linkage. The adjusted Rand index for a seven clusters solution
using single linkage versus complete and average linkage were 0.6495 and 0.8574,
respectively. These values reveal a good level of concordance among the obtained
clusters solutions.
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Figure 6: Undirected graphs for selected day’s series of the aggregated zone.

7.2 Analysis of the eight load zones series

In this section, we will consider the 1344 time series corresponding to the eight
load zones, that is, we have 168 series for each load zone. Figure 3 shows some
examples of these series. As in the previous section, first, we take a regular
difference of the series:

Xd,h,z(w) = logPd,h,z(w)− logPd,h,z(w − 1),

where Pd,h,z(w) denotes the price at weekday d, hour h, and week w at load
zone z with d = 1, 2, . . . , 7, h = 1, 2, . . . , 24, w = 2, 3, . . . , 678 and z = 1, 2, . . . , 8.
Secondly, we apply a hierarchical clustering procedure (single linkage) by using
the GCC measure to the 1344 regular differentiated series, Xd,h,z, obtaining the
dendrogram presented in Figure 9. We find a similar pattern of clusters than in
the aggregated load zone.
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In this data set, the Silhouette statistics and the GAP procedure provide
different but plausible number of clusters, fourteen and seven, respectively. (see
Figure 7). Again, GAP statistics have additional increases suggesting more
than seven well-separated clusters. The seven groups corresponds to the five
working days, the weekend and an additional division of the Monday’s series.
The fourteen groups in addition to the weekday takes into account two groups of
hours in each day: (i) sleeping hours, 01th-06th (or 01th-07th on weekend), and
(ii) the awake hours, 07th-24th (08th to 24th on weekend). There is a cluster
conformed by a single series (Monday, 10am, Maine). Figure 8 shows the series
of prices corresponding to hour 10th of Mondays for the eight load zones and it
is clear that the different pattern in Maine’s series is due to the presence of a
few very large outliers.
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Figure 7: Silhouette and GAP statistics. Dataset of 1344 series from the eight
load regions.

Additionally, we have checked that the clusters found by the hierarchical
clustering procedure are similar to the ones obtained by a k-means algorithm
applied to the main principal coordinates using multidimensional scaling on
matrix (25). 280 principal coordinates are selected that account for more than
90% of the variability. The adjusted Rand index for a seven and fourteen clusters
solutions of hierarchical clustering (single linkage) and k-means procedures were
0.734 and 0.795, respectively. Figure 10 shows the biplot of the series on the
two main principal coordinates (they account for 51% of the variability). Again,
the groups associated to the same weekday are clearly identifiable.

As a conclusion, we observed that both clustering procedures using GCC
measure reveal some interesting features of this large set of time series.
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Figure 8: Prices at 10:00 on Monday for the eight load regions ISO New England
market from January 2011 to December 2014.

8 Conclusions

We have presented a novel procedure for clustering time series that takes into
account their cross dependency. The procedure is based on pairwise measures
involving the determinant of the cross correlation matrices from lag zero to lag
k. A Monte Carlo study has shown the good performance of the cluster methods
with respect to some alternatives.

The proposed procedure can be used both in exploratory analysis of a large
set of time series that will help the modelling and, also, as a tool for improving
the forecast of large sets of time series as studied with model based cluster by
Wang et al (2013). It has been shown that the proposed cluster methods can be
very useful in building dynamic factor models with cluster structure, as studied
by Ando and Bai (2016, 2017).

The results in this article can be extended in several directions. First, as it
is well known and it has been shown in the electricity prices, cluster procedures
can be sensitive to outliers and the proposed procedure can be improved by: (1)
Using robust estimation of the cross-correlation coefficients or; (2) Applying an
outlier cleaning method to the set of time series before the clustering is carried
out. Second, for very large data sets other clustering algorithms can be applied,
as those based on projections. Third, the method can be extended for some types
of non linearity in time series. In the case of conditionally heteroscedastic time
series the extension seems to be straightforward by using the cross correlation
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Figure 9: Dendrogram obtained with the regular differentiated series, Xd,h,z, of
the eight load zones.
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Figure 10: Biplot of the series on the two main principal coordinates.

between squared residuals, but other more general types of nonlinearity could
be considered. These problems will be the subject of further research.
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