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Abstract

A challenging aspect of grouping together regional temperature time series is that some
regions have similar summer temperatures but different winter temperatures and vice
versa. We explore this by applying cluster analysis to regional temperature time series
in Spain using as features the parameter estimates of location, scale and shape, obtained
from fitting the generalised extreme value (GEV) distribution to the block maxima and
block minima of the series. Using this approach, our findings reveal that the identi-
fied clusters can be meaningfully interpreted and are well validated. The motivation
for using this approach is that each time series is represented by just three easily ex-
tracted features. If features were to be extracted as a result of conventional time series
modelling, they are likely to be impacted upon by the uncertainty of model selection.
This is not the case with GEV modelling. Furthermore, GEV modelling enables long
term projections of the maxima and minima which cannot otherwise be achieved from
conventional time series modelling. For comparison purposes, we also explore clustering
the block maxima and block minima of the times series. In addition, we explore the
performance of this approach using simulated data.
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1. Introduction

The analyses of extreme temperatures and sea levels are important tasks in this era
of awareness of the effects of climate change. Many authors have used extreme value
analysis to study sea level extremes (e.g., Tsimpis and Blackman [21], Unikrishnan et
al. [22], Mendez et al. [15], Scotto et al. [19]) and temperature extremes (e.g., Scotto
et al. [20], Alonso et al. [1]). In particular, Scotto et al. [19] combined a Bayesian
Analysis of extreme sea levels to estimate predictive distributions, with hierarchical
cluster analysis to distinguish groups of North Atlantic sea locations. Scotto et al. [20]
applied the same methodology to European daily temperature series to group together
similar locations, while Alonso et al. [1] compared Generalised Pareto models fitted to
extreme temperature observations.
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Because of the variability of climatic conditions across the regions of Spain, it is
known that some regions experience similar summer and similar winter conditions while
others experience similar summer conditions but different winter conditions, or different
summer conditions but similar winter conditions. Hence, we are particularly interested
in examining and modelling the series of annual maximum and minimum temperatures
from the various regions to identify regions with similar climatic conditions. To this end,
we use the estimates of the GEV distributions fitted to the series of annual maxima and
annual minima as clustering features. As well, we cluster the actual maxima and minima
and compare the groupings to those obtained from clustering the GEV estimates.

While most of these previous studies using clustering methods focussed on grouping
together locations based on predictive distributions, the focus of our study is grouping
the temperature series across the available record. We consider daily temperature time
series from the provinces in Spain over a 15-year period. We use the GEV parameter
estimates based on the series of the r largest and r smallest values of the blocks. In addi-
tion, we also use the block maxima and minima as clustering and classification features.
We cluster the series using conventional non-hierarchical methods, namely, k-mean and
k-medoids and we use a classification method, namely, the k-nearest neighbour (k-NN)
algorithm to validate our cluster solutions.

We also conduct a simulation study to evaluate the performance of non-hierarchical
cluster analysis using the GEV features where, specifically we emulate the scenario
where we might have regions with similar summer maxima but with varying degrees
of different winter minima. Here we obtain GEV estimates from the series of block
maxima and minima as well as from the series of the r largest and r smallest values.
For comparison purposes, we also perform the cluster analysis using the actual block
maxima and minima.

The rest of the paper is organised as follows. We briefly describe the generalised ex-
treme value (GEV) distribution and the cluster and classification procedures in Section
2, while in Section 3, we describe the daily times series under consideration, report and
discuss the cluster solutions. In Section 4, we describe and report the results of the
simulation study and conclude in Section 5.

2. Methods

2.1. Extreme Value Analysis

Extreme value analysis has relevance in areas such as flood frequency analysis, envi-
ronmental science, insurance and finance (Reiss and Thomas [16]). In particular, the
modelling of extreme values takes two forms; the method of maxima over fixed inter-
vals, and the method of exceedance over high thresholds. In what follows, we focus on
the method of maxima over fixed intervals by making use of the generalized extreme
value (GEV) distribution. We also consider fitting the GEV distribution to the r-largest
values over fixed intervals.

The generalised extreme value (GEV) distribution is a family of continuous prob-
ability distributions developed within extreme value theory to combine the Gumbel,
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Fréchet and Weibull families, also known as Type I, II and III extreme value distri-
butions, respectively. As a result of the extreme value theorem, the GEV distribution
is the limiting distribution of normalised maxima of a sequence of independent and
identically distributed random variables. Hence, the GEV distribution is used as an
approximation to model the maxima of a long finite sequences of random variables.
The GEV distribution has the following form:

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

}
, (1)

defined on {x : 1 + ξ(x−µ
σ

) > 0} where −∞ < µ < ∞, σ > 0, and −∞ < ξ < ∞. The
three parameters µ, σ and ξ are the location, scale and shape parameters, respectively.
The shape parameter determines the three extreme value types. When ξ < 0, ξ > 0 or
ξ = 0, the GEV distribution is the negative Weibull, Fréchet and Gumbel distribution,
respectively. This is assumed to be the case by taking the limit of Equation 1 as ξ → 0.
For maxima of m years, the log-likelihood function for the annual maxima is given by

`(µ, σ, ξ) = −m log(σ)− (1 + 1/ξ)
m∑
i=1

log

[
1 + ξ

(
xi −µ
σ

)]
−

m∑
i=1

[
1 + ξ

(
xi −µ
σ

)]−1/ξ , (2)

provided 1 + ξ
(
xi−µ
σ

)
> 0 for i = 1, 2, . . . ,m. The expression in Equation 2 is valid for

ξ 6= 0. For ξ = 0, the log-likelihood function for the annual maxima is given by

`(µ, σ) = −m log(σ)−
m∑
i=1

(
xi − µ
σ

)
−

m∑
i=1

exp

[
−
(
xi − µ
σ

)]
. (3)

The above log-likelihood expression presents a difficulty in extreme value analysis
when the number of extreme events is small. This is particularly severe when the method
of maxima over fixed intervals is used. As mentioned in Coles [5], a possible solution is
to consider the r-largest values over fixed intervals.

The number of largest values per year, r, should be chosen carefully since small values
of it will produce likelihood estimators with high variance, whereas large values of r
will produce biased estimates. In practice, r is selected as large as possible, subject to
adequate model diagnostics. The validity of the models can be checked through the
application of graphical methods, in particular, the probability plot, the quantile plot
and the return level plot. For further details, see Coles [5] and the references therein.

The implications of a fitted extreme value model are usually made with reference to
extreme quantiles. By inversion of the GEV distribution function, the quantile, xp, for
a specified exceedance probability p is

xp = µ− σ

ξ

[
1− (− log(1− p)−ξ)

]
for ξ 6= 0, (4)
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and
xp = µ− σ log[− log(1− p)] for ξ = 0. (5)

xp is referred to as the return level associate with a return period 1/p. It is expected to
be exceeded by the annual maximum in any particular year with probability p.

While in most applications of extreme value theory, attention is focussed on the ex-
treme quantiles of the GEV distribution, our main focus is on fitting GEV distributions
to the series of block maxima or to the series of the r largest values per block of our
times series, estimating the parameters and using these parameter estimates as the fea-
tures for clustering and classification. In the application and simulation study, we will
also fit the GEV distribution to the block minima or to the r smallest values per block.
Note that the GEV distribution is fitted to the block minima by applying Equation 2
or Equation 3 to its negative values. Likewise, the GEV distribution is fitted to the r
smallest values per block by applying the relevant equation (Coles [5] to its negative
values.

2.2. Clustering Methods

The k -means clustering method generates a specific number of disjoint, non-hierarchical
clusters. It is well suited to generating spherical clusters. The k -means method is nu-
merical, unsupervised, non-deterministic and iterative.

Given an initial set of randomly assigned k centroids, m
(1)
1 ,m

(1)
1 , · · · ,m(k)

1 , the method
assigns each observation of a data set to the cluster with the closest centroid by deter-
mining the distance from the observation to each cluster centroid. It then determines
a new mean for each cluster to be the centroid of the observations. If the data point
is closest to its own cluster’s centroid, it remains where it is, whereas if the data point
is not closest to its own cluster’s centroid, it is assigned to the cluster with the closest
centroid. The process is repeated until a complete pass through of all the observations
results in no observations moving from one cluster to another. At this point the clusters
are stable and the clustering process ends. The choice of the initial partition can greatly
affect the final clusters that result in terms of inter-cluster and intra-cluster distances
and cohesion. Measures such as the Euclidean, Manhattan and Minkoski distances can
be used.

The k -medoids method is related to the k-means method in that both attempt to
minimise the distance between the observations assigned to a cluster and the point
designated as the cluster centroid. However, the k -medoids method chooses actual ob-
servations which are referred to as medoids, as centres. This method is more robust to
noise and outliers compared to the k -means method. Refer to Hastie et al. [12] for more
details of these clustering methods.

For both of these methods, a useful tool for determining an appropriate number of
clusters, k, is the silhouette method (Rousseeuw [17]). However, there are many other
methods that are also available (e.g., refer to Charrad et al. [4]). We also explore the
use of these methods to determine the appropriate number of clusters.

It should be noted that in the application, the observations referred to above are
the extracted features of the time series. in particular, we use two sets of features:
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(i) annual maximum and minimum temperatures; and (ii) estimates of the three GEV
parameters fitted to the r largest (smallest) values of the summer (winter) season. That
is, in the first set we have 15 variables related to summer temperatures and 15 variables
related to winter temperatures, while in the second set we have three variables related
to GEV distribution fitted to largest temperatures and three variables related to GEV
distribution fitted to smallest temperatures. The algorithm could be summarize in the
following step:

1. Given a set of n time series: X = (X1,X2, . . . ,Xn), extract the selected set of
features related to summer and winter seasons, that is, set (i) or (ii).

2. Obtain the cluster solution using the extracted features as inputs.

In this last step, we use the clustering procedures for only summer related variables, for
only winter related variables and for both. This allows us to illustrate the differences
in the climatic conditions across regions.

2.3. Classification Method

The k-nearest neighbours classification algorithm, k-NN, is a non-parametric method
that predicts class memberships of observations based on the k closest training exam-
ples in the feature space. k-NN is a type of instance-based learning, or lazy learning
procedure where the function is only approximated locally and all computation is de-
ferred until classification (Altman [2]). An instance-based learning procedure does not
use the training data points for generalisation during the learning phase. The k-NN is
a simple algorithm that stores all available cases based on a similarity measure such as
the Euclidean distance. An observation is assigned to the class most common amongst
its k nearest neighbours, where k is a positive integer and is typically small. If k = 1,
then the observation is simply assigned to the class of that single nearest neighbour.
In general, a large k value is probably more precise since it reduces the overall noise.
Cross-validation is one way of determining a good k value by using an independent
dataset to validate the k value. Historically, the optimal k for most datasets has been
between 3-10. Refer to Hastie et al. [12] for more details.

It should be noted that in the application, k-NN is used as a validation technique
since we do not have an a priori class memberships of the observations. We will use the
results of the clustering algorithms as if they were the ”true” class of the observations.

3. Application

We consider the time series of daily maximum temperatures (in degrees Celsius, oC)
observed in fifty provinces and two autonomous cities of Spain from 1990 to 2004.
The temperatures exhibit the usual annual seasonal variation although there are no
apparent trends across the years. As examples, the temperatures observed in Cantabria
(a province in northern Spain with a humid oceanic climate), Madrid (a central province
with continental Mediterranean climate) and Murcia (a province in south east Spain
with Mediterranean climate) are plotted in Figure 1. A labeled provincial map of Spain
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Figure 1: Daily maximum temperatures observed (1990 -2004) in (a) Cantabria; (b) Madrid and (c)
Región de Murcia.
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can be found at [23]. Other studies concerning the extremes in the Iberian Peninsula
can be found in Alonso et al. [1], Fernández-Montes and Rodrigo [6], Furió and Meneu
[7], Brunet et al. [3] and Garćıa-Herrera et al. [8].

The rest of the regions exhibit similar seasonal patterns to those in Figure 1. Fig-
ure 2(a) shows the values above the 95% percentile during the summer period and
Figure 2(b) shows the values below the 5% percentile during the winter period. For
simplicity, for all considered years, we define the period from June 21th until Septem-
ber 20th as summer, and the period from December 21th until March 20th as winter.
Although it is clear that summer/winter occurs in the same period for the three re-
gions, there are differences in the temperature extreme values. For instance, Murcia
and Madrid have hotter summers compared to Cantabria while Madrid has cooler
winters compared to Cantabria and Murcia.

First, we present the cluster solutions obtained by the k-means procedure using the
annual maxima and minima as input features, that is, the 15 annual maxima during
summer periods, and the 15 annual minima during the winter periods. Here and in
what follows Euclidean distances are calculated from each observation to each cluster
centroid. We perform three separate cluster analyses: (i) using only summer related
variables; (ii) using only winter related variables and (iii) using both sets of variables.
Notice that the first two analyses correspond to one block and the third analysis cor-
respond to two blocks. The average silhouette statistics suggests using k = 2 for the
first two analyses, and k = 2 or 3 for the third analysis. Using the R-Package, NbClust
(Charrad et al. [4]) we explored using up to 30 different measures to determine the
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Figure 2: (a) Box-plot of the exceedances (1990-2004) above the 95% percentile during summer period;
(b) Box-plot of the exceedances below the 5% percentile during winter period.
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optimal number of clusters for each of the three scenarios and we found that the ma-
jority of methods suggest that the best number of clusters is 2. The two maps in Figure
3 represent the obtained cluster solutions for k = 2 using only the summer or winter
related variables and two maps in Figure 4 represent the obtained cluster solutions for
k = 2 and k = 3 using both sets of variables.

The map in Figure 3(a) corresponds to a two-cluster solution based on annual maxima.
The means of the maximum temperatures in the two clusters are 34.68 and 39.14, that
is, there is a cluster with mild summers (for instance, Cantabria belongs to this cluster)
and a cluster with hot summers (for instance, (Madrid and Murcia belong to this
cluster).

The map in Figure 3(b) corresponds to a two-cluster solution based on annual minima.
The means of the minimum temperatures in the two clusters are 2.89 and 10.61, that is,
there is a cluster with cool winters (for instance, Madrid belongs to this cluster) and a
cluster with mild winters (for instance, (Cantabria and Murcia belong to this cluster).
It is clear from these two maps that the two-cluster solutions differ in many regions.
The similarity index between these two-cluster solutions is 0.5712 and this suggests
a moderate disagreement in the classification based on summer only and winter only
data.

The map in Figure 4(a) corresponds to a two-cluster solution based on annual minima
and maxima. It is clear that this map coincides with the previous map, that is, the
variables related to minimum temperature dominate the cluster solution. The means
of the maximum (minimum) temperatures in the two clusters are 37.19 (2.89) and
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Figure 3: (a) Two clusters based on summer variables; (b) Two clusters based on winter variables.
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Figure 4: (a) Two clusters based on summer and winter variables; (b) Three clusters based on summer
and winter variables.
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36.70 (10.70). Notice that the means of the maximum temperatures of these clusters
are close, the difference is less than 0.5 degrees Celsius, and this lends support to the
fact that these clusters do not take into account the variables related to maximum
temperature. For this additional reason, in Figure 4(b) we consider a three-cluster
solution based on annual minima and maxima. For comparison purposes, the colour
is related to the mean of the minimum temperatures. The means of the maximum
(minimum) temperatures in the three clusters are 36.51 (2.24), 40.11 (8.30) and 34.11
(11.15). The temperatures of the first cluster correspond to hot summers and cooler
winters (for instance, Madrid belongs to this cluster); the temperatures of the second
cluster correspond to hotter summers and cool winters (for instance, Murcia belongs
to this cluster) and temperatures of the third cluster correspond to mild summers and
winters (for instance, Cantabria belongs to this cluster). The similarity indexes between
the three-cluster solution and the previous two-cluster solutions are 0.6276 and 0.7067,
respectively.

In Tables 1 to 4, we report the estimates of the GEV distribution fitted to the
series of four annual highest (lowest) temperatures from 1990 to 2004 in each of the
fifty Spanish provinces and the two autonomous cities, together with their standard
errors. Since we have at most 15 maxima (or minima), we use the r-largest (smallest)
values approach where we select r=4, hence estimating the GEV parameters from 60
highest (lowest) temperatures each time. Note that in order to extract the r-largest
(smallest) observations within each season, we follow the procedure adopted by Guedes
Soares and Scotto [10], that is, first we obtain the maximum (minimum) of the season
and we exclude a week of observations around this maximum (minimum); then we
obtain the second largest (smaller) value among the non-excluded observations. This
exclusion guaranties that the first and second largest observations could be considered
as independent. For the next largest (smallest) values we proceed in a similar way.

Figures 5 to 10 show four diagnostic plots from fitting GEV distributions to the series
of four annual highest and lowest temperatures from 1990 to 2004 for each of three re-
gions, namely, Cantabria, Madrid and Murcia. If the GEV fit is a reasonable estimated
model for the corresponding population distribution, the points of the probability and
quantile plots should lie close to the diagonal. The probability and quantile plots con-
tain the same information but on different scales. The return level curve should be
asymptotic to a finite level if the estimate of the shape paramater is negative. If the
shape estimate is close to zero, the return level curve should be approxaimately lin-
ear. Finally, the curve of the density plot should be more or less consistent with the
histogram of the data. From each set of these four plots, we observe that with the ex-
ception of the GEV fits to the Madrid highest temperatures and the Cantabria lowest
temperatures, the other fits appear to be quite reasonable. GEV fits to the highest and
lowest temperatures for the other regions also displayed mixed results.

Given the GEV estimates, we can now proceed as in the previous analysis. First, we
obtain two-cluster solutions based on the GEV estimates for the summer period and
for the winter period, then we obtain the two- and three-cluster solutions for combined
sets of GEV estimates for the summer and winter periods. The four maps in Figures 11
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Table 1: GEV estimates with standard errors for highest and lowest temperatures in the Spanish
provinces: 1990-2004 - Part I.

GEV estimates

Highest temperatures Lowest temperatures
Province Location Scale Shape Location Scale Shape

Alava 35.90 1.75 -0.57 2.52 1.82 -0.60
0.39 0.15 0.10 0.45 0.17 0.13

Albacete 38.36 1.41 -0.57 4.73 1.82 -0.62
0.32 0.12 0.09 0.42 0.17 0.10

Alicante 35.62 1.56 -0.15 11.71 1.60 -0.29
0.34 0.16 0.06 0.38 0.16 0.12

Almeria 38.00 1.61 -0.56 13.00 1.44 -0.18
0.36 0.14 0.10 0.34 0.19 0.15

Avila 34.50 1.54 -0.43 0.65 2.34 -0.48
0.34 0.12 0.08 0.54 0.20 0.10

Badajoz 41.39 1.72 -0.42 8.61 1.89 -0.43
0.38 0.14 0.08 0.45 0.18 0.12

Islas Baleares 34.59 1.50 -0.19 10.87 1.49 -0.34
0.33 0.16 0.11 0.36 0.15 0.13

Barcelona 32.28 1.66 -0.17 8.34 2.01 -0.33
0.37 0.18 0.09 0.47 0.19 0.10

Burgos 36.14 1.72 -0.61 1.02 1.56 -0.65
0.38 0.14 0.08 0.39 0.15 0.13

Cáceres 40.11 1.27 -0.63 6.33 2.25 -0.52
0.29 0.11 0.10 0.52 0.18 0.09

Cádiz 34.58 1.82 -0.43 12.43 1.44 -0.37
0.40 0.15 0.09 0.33 0.13 0.09

Castellon 34.58 1.82 -0.43 10.02 1.70 -0.33
0.40 0.15 0.09 0.41 0.18 0.13

Ceuta 31.70 1.97 -0.12 12.93 1.11 -0.20
0.44 0.24 0.12 0.26 0.13 0.12

11



Table 2: GEV estimates with standard errors for highest and lowest temperatures in the Spanish
provinces: 1990-2004 - Part II.

GEV estimates

Highest temperatures Lowest temperatures
Province Location Scale Shape Location Scale Shape

Cordoba 42.81 1.75 -0.33 9.89 1.74 -0.42
0.39 0.16 0.10 0.40 0.14 0.08

Coruña 28.68 2.11 -0.03 9.27 1.48 -0.39
0.47 0.29 0.12 0.35 0.13 0.11

Ciudad Real 40.07 1.46 -0.37 5.06 2.32 -0.44
0.32 0.11 0.07 0.54 0.20 0.10

Cuenca 36.63 1.38 -0.46 3.13 1.90 -0.58
0.30 0.11 0.08 0.45 0.16 0.10

Gerona 35.56 2.18 -0.23 6.96 2.12 -0.27
0.49 0.22 0.10 0.50 0.22 0.11

Granada 39.66 1.47 -0.51 6.73 1.78 -0.55
0.33 0.13 0.10 0.42 0.16 0.12

Guadalajara 35.22 1.40 -0.44 1.13 2.53 -0.48
0.31 0.11 0.07 0.59 0.21 0.09

Guipuzcoa 32.86 2.92 -0.40 3.51 1.67 -0.80
0.66 0.25 0.10 0.42 0.19 0.14

Huelva 39.74 1.95 -0.36 11.68 1.75 -0.35
0.44 0.17 0.09 0.41 0.16 0.11

Huesca 38.12 1.19 -0.56 3.30 3.36 -0.14
0.27 0.11 0.11 0.77 0.41 0.12

Jaen 39.04 1.46 -0.49 6.36 1.85 -0.48
0.32 0.12 0.09 0.43 0.16 0.10

Leon 34.27 1.42 -0.63 0.80 2.05 -0.42
0.32 0.12 0.09 0.48 0.18 0.10

La Rioja 38.32 1.54 -0.57 3.40 2.00 -0.39
0.36 0.14 0.12 0.46 0.17 0.09
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Table 3: GEV estimates with standard errors for highest and lowest temperatures in the Spanish
provinces: 1990-2004 - Part III.

GEV estimates

Highest temperatures Lowest temperatures
Province Location Scale Shape Location Scale Shape

Lugo 33.99 2.80 -0.14 5.18 2.12 -0.11
0.63 0.33 0.12 0.48 0.27 0.11

Lerida 38.25 1.14 -0.71 2.89 3.10 -0.21
0.26 0.11 0.10 0.72 0.33 0.10

Madrid 37.68 1.34 -0.52 4.16 1.76 -0.48
0.30 0.11 0.09 0.42 0.16 0.12

Malaga 38.90 1.99 -0.31 12.53 1.30 -0.32
0.44 0.16 0.07 0.30 0.12 0.10

Melilla 35.55 2.29 -0.22 12.53 1.34 -0.21
0.50 0.23 0.08 0.31 0.15 0.12

Murcia 39.71 1.77 -0.15 10.42 1.76 -0.51
0.39 0.19 0.09 0.43 0.16 0.13

Orense 38.82 1.94 -0.34 6.15 2.15 -0.50
0.44 0.18 0.11 0.50 0.18 0.10

Oviedo 30.96 2.29 -0.32 5.56 1.90 -0.41
0.52 0.22 0.11 0.45 0.17 0.12

Palencia 36.95 1.47 -0.66 2.14 2.15 -0.41
0.33 0.14 0.10 0.50 0.20 0.11

Las Palmas 32.09 2.11 -0.07 18.35 1.07 -0.25
0.47 0.27 0.13 0.24 0.11 0.09

Pamplona 37.57 1.55 -0.49 2.35 1.79 -0.71
0.34 0.12 0.08 0.47 0.20 0.16

Pontevedra 34.30 2.08 -0.41 8.52 1.57 -0.24
0.48 0.18 0.11 0.36 0.16 0.09

Salamanca 36.60 1.39 -0.42 2.56 2.38 -0.43
0.31 0.11 0.08 0.58 0.24 0.15
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Table 4: GEV estimates with standard errors for highest and lowest temperatures in the Spanish
provinces: 1990-2004 - Part IV.

GEV estimates

Highest temperatures Lowest temperatures
Province Location Scale Shape Location Scale Shape

Santa Cruz de Tenerife 34.13 2.07 -0.15 18.00 0.97 -0.35
0.46 0.23 0.10 0.23 0.09 0.10

Cantabria 31.14 2.64 -0.22 7.76 1.35 -0.63
0.61 0.30 0.13 0.33 0.13 0.12

Segovia 35.88 1.42 -0.43 0.90 2.19 -0.64
0.32 0.12 0.09 0.52 0.22 0.12

Sevilla 42.28 1.76 -0.28 11.59 1.61 -0.32
0.39 0.16 0.09 0.37 0.15 0.09

Soria 35.26 1.31 -0.56 1.16 1.95 -0.45
0.29 0.11 0.09 0.45 0.16 0.09

Tarragona 37.19 1.33 -0.32 8.20 2.29 -0.30
0.30 0.12 0.09 0.54 0.24 0.12

Teruel 36.83 1.25 -0.52 2.36 2.80 -0.28
0.28 0.10 0.08 0.65 0.27 0.09

Toledo 40.42 1.28 -0.60 5.72 2.63 -0.19
0.28 0.11 0.09 0.63 0.32 0.15

Valladolid 37.68 1.39 -0.50 2.44 2.00 -0.43
0.31 0.11 0.07 0.46 0.18 0.10

Valencia 36.79 2.10 -0.24 10.75 1.72 -0.22
0.47 0.20 0.09 0.40 0.20 0.13

Vizcaya 35.62 2.57 -0.33 6.88 1.83 -0.33
0.56 0.20 0.06 0.43 0.37 0.24

Zamora 37.33 1.61 -0.35 2.56 2.25 -0.40
0.35 0.13 0.08 0.54 0.23 0.13

Zaragoza 38.82 1.58 -0.34 4.01 2.44 -0.38
0.35 0.13 0.08 0.57 0.23 0.11
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Figure 5: Diagnostic plots of the GEV fit to highest temperatures in Cantabria
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Figure 6: Diagnostic plots of the GEV fit to lowest temperatures in Cantabria
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Figure 7: Diagnostic plots of the GEV fit to highest temperatures in Madrid
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Figure 8: Diagnostic plots of the GEV fit to lowest temperatures in Madrid
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Figure 9: Diagnostic plots of the GEV fit to highest temperatures in Murcia
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Figure 10: Diagnostic plots of the GEV fit to lowest temperatures in Murcia
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Figure 11: (a) Two clusters based on GEV estimates for highest temperatures; (b) Two clusters based
on GEV estimates for lowest temperatures

a)

b)
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Figure 12: (a) Two clusters based on GEV estimates for highest and lowest temperatures; (b) Three
clusters based on GEV estimates for highest and lowest temperatures.

a)

b)
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and 12 represent the obtained cluster solutions.
The map in Figure 11(a) corresponds to a two-cluster solution based on GEV esti-

mates for annual highest temperatures. Note that here and in what follows the GEV
estimates of location, scale and shape are the clustering variables and Euclidean dis-
tances are calculated from each observation to each cluster centroid. The means of the
maximum temperatures in the two clusters are 34.59 and 39.06, which are fairly close
to the values obtained using the annual maxima. Only one region, Salamanca, differs
in its cluster allocation. As expected, the similarity index attains a high value, namely,
0.9807.

The maps in Figures 11(b) and 12(a) correspond to a two-cluster solution based on
GEV estimates for annual lowest temperatures and a two-cluster solution based on GEV
estimates for annual highest and lowest temperatures, respectively. As in the previous
analysis, both maps coincide. Moreover, they coincide with the maps in Figures 3(b)
and 4(a). The coincidences observed in the maps are expected results since maps in Fig-
ures 3-4 and in Figures 11-12 are based on similar information, that is, GEV estimates
are obtained using the annual highest and lowest temperatures.

The map in Figure 12(b) corresponds to a three-cluster solution based on GEV esti-
mates for annual highest and lowest temperatures. The means of the maximum (mini-
mum) temperatures in the three clusters are 36.51 (2.24), 40.41 (7.88) and 34.68 (11.13)
and are close to the values obtained using the annual maxima and minima. In partic-
ular, the first clusters coincide in both approaches. Only two Mediterranean regions,
Almeria and Valencia, change from the second to the third cluster. The similarity index
between the three-cluster solutions (Figures 4(b) and 12(b)) is 0.9505, hence, reflecting
the likeness or consistency of both approaches.

We also took into account the variability of estimates by clustering the 95% upper and
lower confidence limits (six or twelve clustering variables) and found that the clustering
results were identical to the clustering results obtained from just the estimates (three
or six clustering variables). Hence, the uncertainty associated with the GEV estimates
has not impacted on the clustering results.

Note that when the k-medoids clustering method was applied to the GEV estimates
and to the block maxima and minima, similar cluster solutions were obtained.

3.1. Validation of Cluster Solutions

To check on the validity of the k-means 3-cluster solutions using the GEV features,
and the maximum and minimum features, we ran the k-NN classification algorithm with
one to five neighbours for the 52 regions with the groups designated according to the
cluster solutions. The hold-out-one cross-validation method was used to evaluate the
quality of the classification. The algorithm was run 52 times and the mean classification
error obtained for each nearest neighbour.

From the results in Table 11, it can be observed that k-NN classification with three
nearest neighbours produces the best result with a 4% classification error for the 3-
cluster solution with GEV features. This is an indication that the 3-cluster solution
using the k-means procedure with GEV features is reasonably well validated. However,
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Table 5: k-Nearest Neighbours Classification

Classification errors
Number of Neighbours GEV Max and Min

1 8% 8%
2 8% 8%
3 4% 2%
4 8% 6%
5 6% 2%

the k-NN classification with the maxima and minima as features which resulted in a
minimum classification error rate of 2% with three and five nearest neighbours, indicates
that these features produce a higher quality of cluster separation.

3.2. Return Levels

One of the advantages of using the GEV features instead of the maxima and minima
for clustering is that, we can interpret the cluster solutions using the N -year return
levels (extreme quantiles), that is, the values that can be exceeded once every N -years.
For instance, we use the expressions in Equations 4 or 5 for 25, 50 and 100 years in order
to gain some insight into the three obtained clusters. These returns together with their
95% confidence intervals are presented in Table 6 and they confirm and complement our
previous interpretation, that is, (1) the first cluster corresponds to regions having hot
summers with temperatures that could be greater than 39oC in periods of 25 or more
years, and having the coolest winters with temperatures below 0oC in periods of 25 or
more years; (2) the second cluster corresponds to regions having the hottest summers
with temperatures that could be greater than 43oC in periods of 25 or more years, and
cool winters with temperatures above 5oC even in periods of 100 years; (3) the third
cluster corresponds to regions having mild summers and mild winters. Refer to page 56
of Coles [5] for the formulae to obtain the standard error of the returns. Note that in
all cases, the 95% confidence intervals of the returns are within reasonable ranges.

Table 6: Means of the 25, 50 and 100 years returns levels with 95% confidence intervals for the three
clusters based on GEV estimates
Cluster 25 yr 95% CI 50 yr 95% CI 100 yr 95% CI

1 sum 39.12 38.33 39.91 39.40 38.52 40.28 39.61 38.63 40.60
win -0.63 -1.41 0.15 -1.01 -1.94 -0.08 -1.31 -2.40 -0.23

2 sum 43.08 42.33 43.83 43.41 42.55 44.27 43.67 42.68 44.66
win 4.87 4.15 5.59 4.52 3.68 5.35 4.25 3.29 5.20

3 sum 38.37 37.30 39.44 39.04 37.60 40.48 39.63 37.75 41.51
win 8.76 8.03 9.48 8.39 7.56 9.23 8.10 7.13 9.07

Cluster analysis was also applied to the 25, 50 and 100-year return series for summer
maxima and winter minima together and a comparison was made between each set of
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3-cluster solutions and those obtained from 3-cluster solution of the GEV estimates.
Table 7 shows the similarity indexes.

Table 7: Cluster Indexes comparing clusters from original data and 25, 50 and 100 year returns

25-yr 50-yr 100-yr
1990-2004 88% 65% 62%

25-yr 73% 73%
50-yr 98%

The clusters obtained from the original data and from the 25-year return series are
reasonably compatible. However, they become less compatible the further out the pro-
jections go. The clusters from the 50 and 100-year returns are quite compatible. It should
be noted that returns are nonlinear transformation of the GEV parameters, hence, a
full agreement is not expected since the closer the respective parameter estimates in
a particular cluster are, the closer the returns but the reverse is not necessarily true.
In Table 8, we present the results of a k-NN classification using the estimated returns
as explanatory variables and the k-means 3-cluster solution using the GEV features as
“true” class for the observations. The misclassification rates are small and particularly
when three nearest neighbours are used.

4. Simulation Study

Following Safadi and Pena [18], we consider a dynamic factor model

yt = Cft + et, (6)

ft =

p∑
i=1

ρift−1 + wt, (7)

where yt is a q×1 vector of time series, C is a q×k matrix of factor loadings, et ∼ N (0,Γ)
where Γ is a q × q diagonal matrix. Each factor ft is represented by a k × 1 vector
which follows a multivariate autoregressive distribution where the AR matrices ρi are
diagonal matrices with ρi= diag(ρi1, ρi2, · · · , ρik), i = 1, 2, · · · , p and ρ1j, ρ2j, · · · , ρpj,

Table 8: k-Nearest Neighbours Classification using the returns values as explanatory variables

Classification errors
Number of Neighbours 25-yr 50-yr 100-yr (25-yr, 50-yr, 100-yr)

1 12% 15% 23% 15%
2 12% 15% 23% 15%
3 8% 10% 12% 8%
4 10% 8% 13% 10%
5 8% 10% 12% 12%
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j = 1, 2, · · · , k satisfy the stationary conditions and wt ∼ N (0, Ik). Ik is the identity
matrix, and et and wt are independent for all t and s.

We introduce seasonality into this dynamic factor model by adding a harmonic com-
ponent to each factor in Equation 7 as follows:

ft,k =

p∑
i=1

ρi,kft−1,k + Ak

(
sin

2πt

s

)
+Bk

(
cos

2πt

s

)
+ wt, (8)

where s is the length of the cycle. Ak = Rk cos θk and Bk = −Rk sin θk. For each factor,
ft,k, Rk is the amplitude or height of the cycle peaks and θk is the phase or the location of
the peaks relative to time zero. Each factor can have different autoregressive dynamics
and different seasonal dynamics, i.e., different amplitudes and phases.

We try to emulate the situation of regions experiencing similar summer maximum
temperatures with different winter minimum temperatures as is the case in the appli-
cation in Section 3. In order to simulate this case, we use one factor ft,1 as described in
Equation 8, and another factor ft,2 with time variables A2 and B2 as follows:

A2(t) =

{
A1 for t such that 2jπ ≤ 2ρt

s
≤ (2j + 1)π for some j ∈ N,

A∗1 otherwise
(9)

and

B2(t) =

{
B1 for t such that 2jπ ≤ 2ρt

s
≤ (2j + 1)π for some j ∈ N,

B∗1 otherwise
(10)

where A1 = R1 cos θ1 and B1 = −R1 sin θ1, and A∗1 = R2 cos θk and B∗1 = −R2 sin θ1,
R2 = r∗R1. These differences appear when t is such that 2jπ 6 2ρt

s
6 (2j + 1)π for

some j ∈ N.
We emulate daily-type data with s = 366 over both 10 and 20 years, setting the

amplitude for one group of five series to be R1 = 10 and for a second group of five series
to be R2 = r∗R1, with r∗ between 0.1 to 0.9. Figures 13 to 15 show sections of a pairs
of series generated for each scenario, viz., R1 = 10 with each of r∗ = 0.9, 0.5 and 0.1,
i.e., R2 = 9, 5 and 1. We expect that the greater the difference between R and r∗R, the
greater the separation of the groups.

In order to estimate the GEV parameters for both the ”summer” and ”winter” seasons
for each year, we take two blocks per year and hence obtain maxima and minima for
each year. We fit the GEV distribution to the block maxima (r=1) as well as to the four
largest per block (r=4). These steps are repeated for the minima. For both r=1 and
r=4, we therefore have six GEV parameters, three estimated from the block maxima
and three from the block minima.
Tables 9 to 12 show the results for the three scenarios (R1 = 10 with R2 = 9, 5, 1)
for 10 and 20 years over 100 simulations, for the combined summer maxima and winter
minima, summer maxima only, and winter maxima only using the estimated GEV
parameters for one (r = 1) and four (r = 4) largest and smallest values as well as block
maxima and/or minima as inputs into the clustering and classification methods. The
clustering methods are evaluated by determining the similarity index used in Gavrilov
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Figure 13: Time Series with the same peak heights, R1=10 but different valley depths, R1=10, R2=9

0 100 200 300 400 500 600 700 800 900 1000
−15

−10

−5

0

5

10

15

Time in Days

V
al

ue
s

 

 

R1=10

R2=9

Figure 14: Time Series with the same peak heights, R1=10 but different valley depths, R1=10, R2=5
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Figure 15: Time Series with the same peak heights, R1=10 but different valley depths, R1=10, R2=1
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et al. [9]. The index compares two different cluster solutions, C = (C1, C2, . . . , Ck) and
C ′ = (C ′1, C

′
2, . . . , C

′
k′) using the following formulae:

Sim(Ci, C
′
j) = 2

#(Ci
⋂
C ′j)

#(Ci) + #(Ci)
,

and

Sim(C,C ′) = k−1
k∑
i=1

max
1≤j≤k′

Sim(Ci, C
′
j),

where k and k′ are the number of clusters in C and C ′, respectively. This index lies
between zero and one and the closer it is to one, the better the performance. A useful
property of this similarity index is that it allows for the comparison of cluster solu-
tions with different numbers of cluster, i.e., k could be different to k′. Note that other
comparable index, namely, the Adjusted Rand Index (Hubert and Arabie [13] produces
similar results.

Hold-out-one cross-validation is used to evaluate the performance of the k-NN classi-
fication method. To this end, the proportion of correct classifications is obtained.

For the clustering methods, we make the following observations from Table 9:

� When R1 =10 and R2 = 9:

– For both the 10-year and 20-year series, when the GEV features are in-
puts, the k-means method almost always performs better than the k-medoids
method for each of the three scenarios. This is also the case when the max-
ima and minima, maxima only, and minima only, are the clustering features
in the combined summer/winter, summer only and winter only scenarios,
respectively.

– For the winter scenario, i.e., when only minima are used as inputs, these
methods perform slightly better than when both maxima and minima are the
input features in the combined summer/winter scenario. This is also the case
for the winter scenario when GEV features estimated from the minima (r=1)
and from the four smallest values (r=4) are inputs compared to when GEV
features estimated from the maxima and minima (r=1), and the estimated
GEV features from the four largest and four smallest values (r=4) are inputs
for the combined summer/winter scenario.

– For the combined summer/winter scenario the performance of clustering
methods is better when GEV features are estimated from the four largest and
four smallest values (r=4) than when GEV features estimated from the max-
ima and minima (r=1), and than when the combined maxima and minima
are features. The same observations are made for the winter only scenario,
bearing in mind that only the minima are used, and the GEV features are
estimated from the minima (r=1) and the four smallest values (r=4).
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Table 9: Time series with similar summer-type peaks but different winter-type valleys: Similarity Index
for Clustering Methods

10 years, T=3660 20 years, T=7320
R2 gev r=1 gev r=4 max/min gev r=1 gev r=4 max/min

combined summer winter
9 k-means 0.76 0.97 0.91 0.99 0.99 0.96

k-medoids 0.74 0.94 0.81 0.96 1.00 0.88
5 k-means 1.00 1.00 1.00 1.00 1.00 1.00

k-medoids 1.00 1.00 1.00 1.00 1.00 1.00
1 k-means 1.00 1.00 1.00 1.00 1.00 1.00

k-medoids 1.00 1.00 1.00 1.00 1.00 1.00
summer only

9 k-means 0.62 0.59 0.60 0.60 0.59 0.60
k-medoids 0.62 0.59 0.58 0.60 0.60 0.58

5 k-means 0.60 0.59 0.61 0.60 0.61 0.60
k-medoids 0.58 0.61 0.57 0.60 0.61 0.58

1 k-means 0.61 0.60 0.62 0.60 0.60 0.61
k-medoids 0.61 0.59 0.59 0.59 0.58 0.58

winter only
9 k-means 0.84 0.99 0.95 0.99 1.00 0.99

k-medoids 0.83 0.96 0.84 0.97 1.00 0.93
5 k-means 1.00 1.00 1.00 1.00 1.00 1.00

k-medoids 1.00 1.00 0.99 1.00 1.00 1.00
1 k-means 1.00 1.00 1.00 1.00 1.00 1.00

k-medoids 1.00 1.00 1.00 1.00 1.00 1.00
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– For the combined summer/winter and winter only scenarios, the performance
of the methods is always better for the 20-year series when comparing the
same input features.

� For the combined summer/winter and winter only scenarios, when the winter
valleys are further apart (R2 = 5 and R2 = 1), both methods are observed to
perfectly differentiate between the two groups of time series.

� For the summer only scenario, for all three feature sets, maxima, GEV based
on maxima (r=1) and GEV based on four largest values (r=4), the clustering
performance of these methods is very poor for both the 10 and 20 year series.
This is to be expected since the summer peaks are at similar heights.

Hence, it is clear from these observations, the winter features contribute most to the
differentiation between the two groups of time series.

For the k-NN classification method (Tables 10 to 12), similar observations as for
the clustering methods are made for most of the time. In all cases, the k-NN method
appears to well validate the cluster separation for the combined summer/winter and
winter only scenarios.

Table 10: Time series with similar summer-type peaks but different winter-type valleys (Combined
summer and winter): Percentage of Correct Classifications using k-NN

10 years, T=3660 20 years, T=7320
R2 gev r=1 gev r=4 max/min gev r=1 gev r=4 max/min

9 k-nn (1) 0.85 0.98 0.85 0.99 1.00 0.93
k-nn (2) 0.94 0.99 0.95 1.00 1.00 0.99
k-nn (3) 0.81 0.97 0.87 0.99 1.00 0.95
k-nn (4) 0.91 0.99 0.94 1.00 1.00 0.98
k-nn (5) 0.73 0.97 0.85 0.98 1.00 0.94

5 k-nn (1) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (2) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (3) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (4) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (5) 1.00 1.00 1.00 1.00 1.00 1.00

1 k-nn (1) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (2) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (3) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (4) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (5) 1.00 1.00 1.00 1.00 1.00 1.00
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Table 11: Time series with similar summer-type peaks but different winter-type valleys (Summer only):
Percentage of Correct Classifications using k-NN

10 years, T=3660 20 years, T=7320
R2 gev r=1 gev r=4 max gev r=1 gev r=4 max

9 k-nn (1) 0.44 0.43 0.45 0.43 0.41 0.43
k-nn (2) 0.74 0.70 0.71 0.72 0.70 0.71
k-nn (3) 0.43 0.37 0.39 0.42 0.39 0.38
k-nn (4) 0.66 0.63 0.64 0.65 0.64 0.63
k-nn (5) 0.38 0.34 0.36 0.37 0.34 0.36

5 k-nn (1) 0.43 0.43 0.46 0.46 0.47 0.43
k-nn (2) 0.71 0.71 0.74 0.73 0.74 0.72
k-nn (3) 0.36 0.41 0.41 0.42 0.41 0.39
k-nn (4) 0.62 0.65 0.63 0.66 0.65 0.63
k-nn (5) 0.32 0.36 0.36 0.39 0.35 0.34

1 k-nn (1) 0.48 0.44 0.43 0.44 0.45 0.45
k-nn (2) 0.74 0.72 0.71 0.72 0.71 0.71
k-nn (3) 0.43 0.39 0.40 0.39 0.41 0.40
k-nn (4) 0.65 0.65 0.66 0.64 0.64 0.62
k-nn (5) 0.39 0.39 0.37 0.35 0.33 0.35

28



Table 12: Time series with similar summer-type peaks but different winter-type valleys (Winter only):
Percentage of Correct Classifications using k-NN

10 years, T=3660 20 years, T=7320
R2 gev r=1 gev r=4 min gev r=1 gev r=4 min

9 k-nn (1) 0.92 0.98 0.90 0.99 1.00 0.96
k-nn (2) 0.98 0.99 0.97 1.00 1.00 0.99
k-nn (3) 0.89 0.98 0.92 0.99 1.00 0.97
k-nn (4) 0.95 0.99 0.96 0.99 1.00 0.99
k-nn (5) 0.83 0.98 0.91 0.98 1.00 0.97

5 k-nn (1) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (2) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (3) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (4) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (5) 1.00 1.00 1.00 1.00 1.00 1.00

k-nn (1) 1.00 1.00 1.00 1.00 1.00 1.00
1 k-nn (2) 1.00 1.00 1.00 1.00 1.00 1.00

k-nn (3) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (4) 1.00 1.00 1.00 1.00 1.00 1.00
k-nn (5) 1.00 1.00 1.00 1.00 1.00 1.00
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5. Concluding Remarks and Future Directions

The clustering solutions in the application when the GEV features are used as clus-
tering features can be meaningfully interpreted. This is also the case when the block
maxima and block minima are used as clustering features. Validation of the cluster
solutions in the application reveal that the block maxima and minima could be bet-
ter separation features than the GEV estimates. However, an advantage of using GEV
estimates as clustering features is that return level statements can be made about long-
term maxima and minima which, in the case of applying this to real temperature time
series may have policy implications in dealing with long-term extreme temperatures.
Of course, other environmental variables (solar radiation, atmospheric ocean processes,
pollutant gases concentration, etc.) can be analyzed with the proposed procedure.

It is clear from the simulation studies, the GEV estimates of location, scale and shape
as well as the block maxima and minima are good separation features for temperature-
type time series in general.

The future directions that we will be embarking on, in analysing real time series
extremes is, (1) extend GEV fitted to extremes with trend, (2) consider the complete
returns function for all quantiles leading to the clustering of functional data, and (3)
examining the fuzzy behaviour of the series and incorporating their spatial features as
an added source of information.
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