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Abstract: In this paper we work with multivariate time series that follow a Dynamic Factor
Model. In particular, we consider the setting where factors are dominated by highly persistent
AutoRegressive (AR) processes, and samples that are rather small. Therefore, the factors’ AR models
are estimated using small sample bias correction techniques. A Monte Carlo study reveals that
bias-correcting the AR coefficients of the factors allows to obtain better results in terms of prediction
interval coverage. As expected, the simulation reveals that bias-correction is more successful for
smaller samples. Results are gathered assuming the AR order and number of factors are known as
well as unknown. We also study the advantages of this technique for a set of Industrial Production
Indexes of several European countries.
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persistent process; Dynamic Factor Model.

1. Introduction

Dimensionality reduction techniques have been employed for decades in the context of multiple
time series datasets because “when the series are driven by a set of common factors, (a) a large number
of parameters may be needed to obtain an adequate representation of the system and (b) the estimated
parameters will be highly correlated. Therefore, a complex and badly defined relationship can appear
when, in fact, a simpler and parsimonious model in terms of a few common factors can be operating.”
Peña and Box (1987).

This idea that large sets of time series can be modelled and forecast by using only a few variables
that integrate information of all the data has been successfully applied in diverse research fields.
Some examples are:

• Commodities’ prices: Peña and Box (1987) extract common factors from wheat prices of
different regions, Alonso et al. (2011), García-Martos et al. (2012), and Alonso et al. (2016) use
dynamic factors for electricity prices, García-Martos et al. (2013) employ dynamic factors to
model the volatility of electricity, fuel, and CO2;

• Macroeconomic variables: Stock and Watson (2002) apply principal components to 149
economic indicators, Sargent and Sims (1977) work with index models in the context of business
cycles, Forni et al. (1999) combine dynamic principal components and dynamic factor analysis
to estimate economic activity indexes;

• Demographic variables: Lee and Carter (1992) use singular value decomposition to estimate
indexes that help forecast age specific mortality in the US, Alonso et al. (2008) employ a dynamic
factor model for mortality and fertility rates of the Spanish population.
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In an iterative process, we can obtain forecasts for common factors, that allow to obtain forecasts
for the original dataset or for other dependent variables. To obtain these forecasts, the common factors
are modelled to follow, for instance, ARIMA models Jeong and Bienkiewicz (1997); García-Ferrer et al.
(2011); García-Martos et al. (2012) or VAR and VARIMA models Stock and Watson (2002); Alonso et al.
(2011); Peña and Poncela (2006).

In this work we focus on modelling the common factors by means of AR models because we
want to study one feature in particular: small sample bias-correction of nearly non-stationary AR
coefficients. This aspect has been explored, among others, by Clements and Kim (2007), Roy and
Fuller (2001), and Clements and Taylor (2001). However, to the best of our knowledge, it has not
been studied in the context of factor models, even though it is not unusual to find highly persistent
common factors. Some examples of this can be found in Alonso et al. (2011), for electricity prices of
the Spanish market; and Gregory and Head (1999), for macroeconomic relations between investment,
productivity and the current account in a multi-country setting. A simulation exercise will show
that the improvements of employing the aforementioned corrections do not fade when the factors’
forecasts are transformed back (through the estimated relation data series-factors) to become forecasts
of the original time series. The proposal is illustrated with an empirical case as well, featuring the
Industrial Production Index of several European countries.

The remainder of the paper is organized as follows. Section 2 describes the methodology. Section
3 presents the experimental design, and Section 4 shows the results of the Monte Carlo simulation.
Section 5 contains an empirical application of the proposed methodology. Finally, Section 6 concludes.

2. Methodology

The methodology can be summarized in two steps. Given a vector of variables yt, the first
step consists of estimating the common factors. In the second step, an AR model for each factor is
estimated. These AR models allow to obtain h-step-ahead (h being the forecasting horizon) forecasts1

for the common factors, which, using the corresponding weights, are transformed to forecasts for yt.
Though we work with AR models, it would be possible to extend the technique for seasonal

ARIMA models. The complete process is described in the following subsections.

2.1. The Factor Model

As Geweke and Singleton (1981) explain, given an observable vector of time series, the factor
model determines how many common factors there are; these factors can be interpreted as latent
variables underlying the covariance structure of the series.

In the factor model, a set of observed variables, yt, is decomposed into unobserved common
factors, Ft, and specific components, εt. Let yt be an N-dimensional observed vector of variables at
time t, generated by an R-dimensional vector of unobserved common factors, with R � N. εt, the
vector of specific components or idiosyncratic errors, is also N-dimensional. The factor model can be
expressed as

yt = ΩFt + εt, (1)

where Ω is the matrix of loads or weights and has dimension N × R. It indicates the relation of the R
unobserved common factors with the observed series in yt. The loadings in Ω are unknown, and we
will consider only static weights (therefore, a static factor model). However, in a more general model,
the effect of lagged factors may be included as well; in that case we would have a lagged polynomial
matrix Ω(L) instead, where L is the lag operator. That is the so-called dynamic factor model. Bai and
Ng (2008) indicate that for empirical applications the two approaches render similar forecasts, but the

1 See Marcellino et al. (2006) for a comparison between iterated multi-period ahead forecasts and direct forecasts for time
series.
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static approach, for which time domain methods are employed, is easier to estimate and implies fewer
decisions regarding auxiliary parameters than the dynamic approach, which is estimated employing
frequency domain analysis.

There are several techniques to estimate the unobserved common factors Ft. In their survey,
Stock and Watson (2010) divide them in three groups: maximum likelihood by means of Kalman
filter, non-parametric cross-sectional averaging, and hybrid techniques that combine the former two.

In this work we will use principal components (adapted to time series), which is included
in the second set of methods. One advantage of this methodology is that it is computationally
fast. Moreover, Stock and Watson (2002) prove that the factors’ estimates obtained by means of
principal components are consistent, even if there is serial or cross-sectional correlation in the specific
components. Stock and Watson (2010) also indicate that when the number of variables is large, the
estimation of the common factors is accurate enough that it can be included as data in regressions.
We will be operating in a context like this: taking the cross-section dimension of the data to be high,
while varying the length of the time dimension.

We obtain the common factors Ft by means of eigen-decomposition. This way we transform a
matrix of data Y of size (T × N), where T represents the time dimension of the dataset, and N the
cross sectional dimension, to a space with fewer dimensions, keeping those in which the data has the
maximum variance. Let us recall the basics of this estimation: given ΣY(N × N) (in practice this will
be the sample variance-covariance matrix for the dataset), we find real values λ and vectors e such
that

ΣYe = λe, (2)

where λ are the so called eigenvalues of matrix ΣY, and e are the corresponding eigenvectors. When
we do the multiplication in the left side, ΣYe, we are transforming the points of matrix ΣY into a new
coordinates space. The objective is to keep only a few eigenvectors so that the transformation renders
a space with fewer dimensions than the original dataset (R < N). As a property, assuming that the
eigenvalues are different, the first component has greater variance than the second component, the
second component has greater variance than the third component, and so on (Mardia et al., 1979, pp.
215).

This procedure is equivalent to minimizing a loss function given by the average squared
difference between the data and the commonality, yt − ΩFt, subject to a normalization and
orthogonality of the weights (see Stock and Watson, 2010, for further details).

The estimation results in Ω̂ equal to a matrix of the eigenvectors of ΣY associated to the greatest R
eigenvalues. Notice that it is infeasible to separately identify the common factors and their weights.
Depending on the problem at hand, it is convenient to establish constrains, either for the factors
or for the weights, that solve the identification problem. For reasons that will become clear in the
simulations, we will constraint the weights to be orthogonal. For other details regarding the theory
of factor models see Bai and Ng (2008).

This procedure for obtaining the factors is alike the dynamic extension (incorporates time
dimension) of the principal components analysis (PCA) static case described in the appendix of
García-Martos et al. (2012), and employed by Stock and Watson (2002). García-Martos et al. (2012)
explain that, while Peña and Box (1987) dealt with stationary data, Lee and Carter (1992) employed
non stationary data, suggesting that singular value decomposition (SVD) of the covariance matrix is
used to compute the weights.

We are also proceeding similarly to Forni et al. (1999): employ principal components (PC) to
separate the dynamics that create correlations in the whole panel, from the noise that characterizes
each observed series and that is weakly related to the other observed series; and afterwards we
incorporate the components in lieu of the factors in a dynamic factor model. However, since Forni
et al. (1999) work with dynamic PC, they calculate the eigenvalues and eigenvectors of the spectral
density matrix at different frequencies instead of those belonging to the data’s covariance matrix.
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It will not be an objective of this work to introduce methodology to model the idiosyncratic
components. Therefore, we will take the specific factors εt as white noise. Furthermore, the specific
factors’ variances should be small in comparison to the variances of the common factors; otherwise
they would be incorporated into the principal components (Mardia et al., 1979, pp.276).

Finally, we recur to criterion IC3 of Bai and Ng (2002) to consistently estimate the number of
factors R to keep in approximate factor models (meaning factor models in which the factors are

approximated with PC). These authors define the criterion as IC3 = ln(V(r, F̂r)) + r( lnC2
NT

C2
NT

), where

V(r, F̂r) stands for the mean residual variance of employing r factors, and lnC2
NT

C2
NT

is the penalty for

over-fitting. CNT = min(N, T), where N is number of time series included, and T is the series’ length.
Notice that we have changed their notation to be in line with the one hereby employed. Also, we
use capital R to indicate the “true” (unknown) number of factors, and small r when referring to the
estimated number of factors.

The advantage of this criterion is that it depends on both N and T, while other criteria such
as the corrected Akaike Information Criterion (AICc, Hurvich and Tsai, 1989) or the Bayesian
Information Criterion (BIC, Schwarz, 1978) only include one dimension (either N or T is taken as
fixed). We selected IC3 from the criteria proposed by Bai and Ng (2002) because it had better or equal
performance than the others included in that paper, for values of N, T similar to the ones we employ
in the simulation (see Tables I and II of Bai and Ng, 2002). We obtain an excellent performance of
this criterion in our simulations, but another option would be to use Ahn and Horenstein (2013) test,
which may work better in some circumstances.

2.2. AR factors

The factors Ft described in the previous section can be dynamic, following a time series model.
We consider that each unobservable common factor Fi,t is generated by an AR processes. Examples of
AR common factors are given in Gregory and Head (1999) (study of the interactions of productivity,
investment and current account), Fiorentini et al. (2016) (the authors estimate a single common factor
for US sectoral employment data), Doz et al. (2012) (though the authors contemplate estimating VAR
factors, in their simulation they generate AR factors), and García-Martos et al. (2013) (they estimate
univariate GARCH models for common factors which represent volatility).

The following transition equation Gregory and Head (1999); Clements and Kim (2007) describes
each factor:

Fi,t = φ1Fi,t−1 + φ2Fi,t−2 + ... + φpFi,t−p + ηi,t. (3)

We consider that the roots of the AR characteristic equation lie inside the unit circle (i.e. the
process is stationary). We will specially pay attention to processes for which the factors are highly
persistent, though not integrated, thus our focus is on close to unit roots of the characteristic
polynomial of the AR model. For procedures that deal with integrated factors see Peña and Poncela
(2006).

Also, ηi,t will be normally distributed. However, in Appendix B we will see that this is not
a restriction, and having other distribution for the errors ηi,t does not alter the conclusions hereby
obtained.

This particular type of model for the factors allows to maintain a low number of parameters to
estimate. The AR coefficients are estimated by means of Conditional Sum of Squares (CSS) instead
of Ordinary Least Squares (OLS) Clements and Kim (2007) in order to facilitate future extensions to
include MA terms. In simulations, we assessed the estimates’ distributions obtained by OLS and CSS
for different values of the AR coefficients, and we observed that they overlap almost completely.

In order to select the number of lags, p, in each AR model, we will compare the performance of
the AICc and BIC criteria. An alternative option not explored in this work would be to employ an
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endogenous lag order selection algorithm that re-estimates p in each iteration of the bootstrap Kilian
(1998b).

2.3. Small Sample Bias Correction

CSS estimators for AR process are consistent.2 However, in small samples some bias and
skewness are often present. We employ two approaches in order to improve the estimation for highly
persistent factors. On the one hand, the bootstrap bias-corrected estimator of Clements and Kim
(2007), and on the other hand, the Roy-Fuller estimator Roy and Fuller (2001).

Clements and Kim (2007) bootstrap bias correction can be interpreted as a constant bias
correction MacKinnon and Smith (1998); this means that the correction depends linearly on the
value of the population parameter. This is a different approach from Roy and Fuller (2001) in that
Roy-Fuller’s estimate is mainly a function of the unit root test statistic.

To verify the accuracy of prediction intervals obtained based on these corrections, we will
perform an extensive Monte Carlo experiment in Section 4.

2.3.1. Bootstrap Bias Correction

The procedure for Clements and Kim bootstrap bias correction may be summarized in the
following steps. This description follows Clements and Kim (2007), and we adapt their notation
to indicate that we are doing the correction in the models for the common factors, an extension of
their procedure for a single series.

This process takes place after a first estimation of the AR model for each factor by means of CSS;
we identify these coefficients as φ̂1, φ̂2, ..., φ̂p. Notice there is a small difference of our approach with
the one in Clements and Kim (2007); these authors use OLS in their estimations while we employ CSS
in order to be able to incorporate MA terms in a future extension of this work. We take a shortcut and
ignore sub-indexes for the factors since the procedure is the same for all of them.

1. Generate a pseudo-dataset f ∗t employing the estimated AR coefficients φ̂1, φ̂2, ..., φ̂p, randomly
selected residuals (η∗t ), and the first p estimates of the factor as starting values, f1, f2, ..., fp.3 We
will repeat this step a number of times B.

f ∗t = φ̂1 f ∗t−1 + φ̂2 f ∗t−2 + ... + φ̂p f ∗t−p + η∗t . (4)

2. Obtain the so called bootstrap estimates by re-estimating the AR coefficients for each
pseudo-dataset f ∗1 , f ∗2 , ..., f ∗T generated in the previous step. This means we will have B values
φ̂∗1 , φ̂∗2 , ..., φ̂∗p.

3. Clements and Kim (2007) explain that the bias can be estimated with the formula

bias = mean(φ̂∗)− φ̂. (5)

They obtain the bias-corrected estimator, φ̂BC, by subtracting the bias from the OLS estimate
(CSS for us instead here), and get

φ̂BC = 2× φ̂−mean(φ̂∗). (6)

4. Last, if needed, Kilian (1998a)’s algorithm is employed in order to adjust bootstrap estimates
when they fall outside the stationary region. Any of the next three situations may arise:

2 Robinson (2006) shows that the CSS estimation converges a.s. in the context of long memory models. Also for long memory
models, SARFIMA, Egrioglu et al. (2011) use simulation to show that CSS does better than a two-staged methodology.

3 The notation for the common factors is in lowercase to emphasize that at this point we are working with factors that are
estimates themselves; in other words, for each factor, F̂ = f .
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• When the original CSS estimates φ̂ are not stationary, we do not perform a bootstrap bias
correction, thus φ̂BC = φ̂.

• The corrected φ̂BC estimates should be used directly if they are stationary and the CSS φ̂

estimates are stationary as well.
• When the estimates of φ̂ are stationary but φ̂BC is not, then iterate i times until φ̂BC

i becomes
stationary in the following way. We start with the values δ1 = 1, ∆1 = bias (calculated in
(5)), and calculate φ̂BC

1 = φ̂− ∆1. We will iterate i times, each time calculating ∆i+1 = δi∆i,
δi+1 = δi − 0.01, φ̂BC

i = φ̂− ∆i, until the estimates imply stationarity.

Kilian (1998a) shows that, because of small sample bias and skewness, bias-corrected bootstrap
intervals are usually more accurate than the intervals obtained with other techniques, such as delta
method, standard bootstrap, and Monte Carlo integration. This author works with bivariate models
including VAR models, random walk models, and cointegrated processes, though not particularly
with AR models like we do. Interestingly, Kilian (1998a) indicates that the procedure in step 4 does
not have an effect asymptotically, and it is not constraining the OLS estimator because it affects the
estimation of the bias and does not directly affect the OLS estimate.

2.3.2. Roy Fuller Estimator

As an alternative, we consider the estimator developed by Roy and Fuller (2001). The
explanation in this section summarizes the relevant parts of that reference for this work. These
authors’ purpose is to obtain an estimator which provides with considerable gains in terms of mean
square error for models that are close to the unit root, while maintaining a small loss in mean square
error efficiency for the remainder parameter space. According to their simulations, the bias is reduced
even if the process is not highly persistent.

Roy and Fuller (2001) start with a regression that works as an ARX (Auto Regressive Exogenous)
with exogenous variables given by the lagged differences of the process, as it is done to test for a
unit root in an AR(p) process. Since at this point we would be working with the estimated common
factors, f , for our problem the regression would be

ft = θ̂1 ft−1 + θ̂2∆ ft−1 + ... + θ̂p∆ ft−p+1 + ut, (7)

where θ̂1 = −∑
p
i=1 φ̂i, θ̂i = −∑

p
j=i φ̂j, and ∆ ft = ft− ft−1. Roy and Fuller (2001)’s correction depends

on the LS estimator θ̂1 (in our case estimated by CSS by adding up the auto-regressive coefficients

φ̂i), its standard error σ̂1, the unit root test statistic τ̂ = (θ̂1−1)
σ̂1

, and a function Cp that corrects the
bias and adapts depending on how close to the unit root the process is. Based on their paper, for us
Roy-Fuller’s corrected estimate would be,

θ̂RF
1 = θ̂CSS

1 + [Cp(τ̂) + C−p(τ̂)]σ̂
1/2
1 , (8)

where the authors have established

Cp(τ̂) =


0 for τ̂ ≤ −(k1)

1/2

b p+1
2 cn−1τ̂ − (s + 1)τ̂−1 for (k1)

1/2 < τ̂ ≤ K
b p+1

2 cn−1τ̂ − (s + 1)(τ̂ + k2(τ̂ − K))−1 for K < τ̂ ≤ τ0.5

−τ0.5 + dn(τ̂ − τ0.5) for τ0.5 ≤ τ̂,

(9)

k1 = b(p + 1)/2c−1(s + 1)n, k2 = [(1 + b(p + 1)/2cn−1)τ0.5(τ0.5 − K)]−1[(s + 1) − b(p +

1)/2cn−1τ2
0.5]; τ0.5 is the median of τ when there is unit root; and dn is a slope set to 0.1111 in Roy and

Fuller (2001)’s simulations. Also K = 5, and s is the rank of exogenous explanatory variables (if any).
Functions Cp(τ̂) and C−p(τ̂) are defined similarly. Clements and Kim (2007) indicate that C−p(τ̂)

is close to null for most time series employed in economics because these tend to have a unit root, or
be close to unit root processes. See Roy and Fuller (2001) for details on this function.
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2.4. Complete Process: Obtaining Forecasting Intervals

For calculating forecast intervals, we employ a bootstrap procedure based on Alonso et al. (2008).
We follow the same steps, but we exclude estimation and forecasts of specific factors in the factor
model, and we include bias corrections in the estimation of the AR coefficients.

We are using a parametric bootstrap, since we are estimating the model from the data only once,
and then using this model as if it were the true model.4 Ignoring model uncertainty will not be a
problem when we specify in advance the value of p, known in simulations, but can definitely affect
the estimation when p is unknown.

The process can be summarized in the next steps:

1. Using multiple series in a matrix, Y, we extract common factors by eigen-decomposition of the
variance-covariance matrix.

Then, we conduct steps 2 to 4 separately for each extracted common factor.

2. Estimate an AR model for each factor. This involves two steps: first, selecting p̂, and then
estimating φ̂0, φ̂1, ..., φ̂p̂, σ̂2

η and η̂t. To estimate the coefficients φ̂ we can decide to use the small
sample bias correction methods outlined in the previous section. 5

3. Residuals re-sampling: in this step the residuals are centred. We name their distribution Φη̂ . To
avoid excessive notation, we do not use superscripts, but it should be clear that if we use bias
correction (φ̂BC) then the residuals will correspond to these coefficients, with a distribution Φη̂BC ,
and analogously for Roy-Fuller’s correction. We draw a random sample from the residuals’
distribution function Φη̂ for t = T + 1, ..., T + H, H being the maximum forecasting horizon
considered.

4. Recursively generate factor’s forecasts by using the AR estimated coefficients (with or without
correction of the bias), the re-sampled residuals η̂T+h, and the last values for the common factor
fT−p+1, ..., fT .

f̂T+h = φ̂1 f̂T+h−1 + φ̂2 f̂T+h−2 + ... + φ̂p f̂T+h−p + η̂T+h. (10)

Notice that by using the last values of f we are conditioning on the “observed”6 sample
realization (following Pascual et al., 2001).

Steps 3 and 4 are carried out B times (B = 500 in our simulation study), and they render an
empirical forecast distribution for each factor, Φ f . We employ Efron percentiles to obtain prediction
intervals for fT+h, h = 1, ..., H. Therefore, for a nominal coverage of (1− α) and forecasting horizon
h, the interval for factor f is given by [Φ−1

f̂T+h
(α/2), Φ−1

f̂T+h
(1− α/2)]. As an advantage, this bootstrap

approach does not assume normality in the errors of the models for the factors (Clements and Taylor,
2001; Fresoli et al., 2015, for an assessment of the effect of this assumption in forecasting densities of
VAR(2) models with χ2 errors).

5. Calculate forecasts for the series using the forecasts for each factor and the estimated weights
(equation 11, in vector notation). We also obtain prediction intervals for the series employing
Efron percentiles.

ŷT+h = Ω̂ f̂T+h + εT+h, (11)

where ŷT+h is a vector that contains the forecasts for the N series, Ω̂ is the (N × r) estimated
matrix of loadings, and f̂T+h the forecasted factors (r× 1).

4 See Alonso et al. (2004) for a discussion on how to introduce model selection in the bootstrap algorithm, and an assessment
of results of alternative methods for the estimation of prediction intervals.

5 If so, we adapted package BootPR in the software R to use CSS to get the bias corrected φ̂.
6 “observed” is between quotes because the factors are not actually observed, but they themselves are estimates.



8 of 42

3. Experimental Design

We employ simulated datasets to illustrate the performance of the methodology. The data matrix
Y has dimension N × T, N = 25 being the number of time series included, and T = 50, 100, 200, the
time dimension. Notice that T assumes three alternative values in order to allow comparison of the
estimation’s performance for different sample sizes. As Clements and Kim (2007) indicate, we expect
the bias in the estimates of the AR coefficients to be worse the smaller the series’ length.

The data matrix Y results from pre-specified AR common factors, orthonormal weight vectors
(following Stock and Watson, 2002), and normally distributed idiosyncratic errors εt ∼ N(0, 0.1) with
mean and standard deviation values like Alonso et al. (2011). In particular, we start with weights
following model 2 of Alonso et al. (2011)7 and then transform them into orthonormal vectors to obtain
the following weights:(

ω1

ω2

)T
=
(

0.19 0.19 0.19 0.19 0.38 0.19 0.19 0.19 0.19 −0.1 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
0 0.02 0.02 0.02 −0.31 0.02 0.02 0.02 0.02 0.51 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.72

)T

Even if Principal Components allows to identify the factor space by assuming orthonormal common
factors, we need to impose the condition that the first load of the second factor equals 0 in order
to identify the individual common factors in a two-factor model, and model each of them as
independent AR(p) processes. We experimented with alternative, in particular more diverse weights,
and obtained similar results.

Additionally, the factors are created with no cross correlation between them, and the variance
pertaining to the first factor is strictly greater than the one of the second factor σ2

F1 > σ2
F2. The

persistence in the factors will be such that their variances will maintain this relation. This is in line
with assumption F1.b of Stock and Watson (2002) : “E(FtF′t ) = ΣFF, where ΣFF is a diagonal matrix
with elements σii > σjj > 0 for i < j”.

We consider AR models of orders one and two for the common factors. The data generating
process is deliberately simple in order to easily compare the effects of sample size, as well as the
proximity to unit root.

Also, η1,t ∼ N(0, 1) while η2,t ∼ N(0, 0.5), according to the principle that the variance of the
second factor should be smaller than the variance of the first factor.

We perform a Monte Carlo study (10,000 trials) to evaluate the benefits of small sample bias
correction. The estimations will be evaluated in these two situations:

• the number of factors and their AR order are known
• the number of factors and their AR order are unknown

Even though known number of factors and AR order is an infeasible scenario, it will allow us to
isolate any influence the estimation of these parameters may cast. The forecasting horizon ranges
from 1 to 10. The bootstrap for the AR coefficients (in the bootstrap bias-corrected approach), and for
the prediction intervals (all approaches) are based on 500 replications.

We compare the performance of not using a bias correction (denoted as none in the tables),
the bootstrap bias-corrected estimator of Clements and Kim (2007) (denoted as BC), and Roy-Fuller
estimates of Roy and Fuller (2001) (denoted as RF). We evaluate their performance for a 95% nominal
coverage.

In order to assess performance, for the prediction intervals we obtain average coverage rates
(Cm), average length (Lm), and CQm (a measure combining Cm and Lm) introduced in Alonso et al.
(2002). The coverage rates are estimated as the average of the Monte Carlo trials coverage rates
for the prediction intervals. The effective coverage rate in each Monte Carlo trial is the relative

7 Alonso et al. (2011) loading matrix Ω is made up of vectors ω1 = [1, 1, 1, 1, 2, 1, 1, 1, 1,−0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T ,
and ω2 = 0.3× [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3]T .
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frequency indicating the proportion of “true observations” included in the bootstrap interval. These
“true processes” or continuations are created following Alonso et al. (2002). Furthermore, like these
authors, we calculate a “theoretical” interval length (Lt) that can be used for comparison. Last, CQm

is calculated as CQm = |1 − Cm/Ct| + |1 − Lm/Lt|, where Ct is the nominal coverage, and Lt the
estimated theoretical mean interval length Alonso et al. (2002).

4. Results for the Simulation

In this section we present the results for the Monte Carlo simulation. To make a clear
presentation, we divide them in two parts. In the first part we present the results when the number
of factors, R, and the factors’ AR order, p, are known. In the second part (Section 4.2) we present the
results when R and p are unknown and selected using IC3 and BIC, respectively.

4.1. Number of Factors and AR orders Known

Firstly, we present the results for factors that follow AR(1) models. In order to ensure a higher
variance of the first factor, its AR coefficient φF1 = 0.975 is greater than the corresponding one to the
second factor, φF2 = 0.90, and the same for the variance of the noise (ηt,F1 = 1 while ηt,F2 = 0.50).

Results are obtained for sample sizes T = 50, 100, 200. Tables 1, 2, and 3 present the outcomes
that correspond to five representative series yt out of the N = 25 observed series generated. The
tables in appendix A present results and explanations in detail for the factors.

In Table 1, for T = 50, we obtain that the coverage of the intervals, though usually well below
the 95% theoretical value, is improved when using BC and RF (in comparison to none). Furthermore,
the improvement is more noticeable the longer the forecasting horizon, i.e. h = 10 presents a greater
improvement than h = 1. In this line, Clements and Taylor (2001) explain that the bias can increase
with the forecasting horizon h because we power up the biased estimates to produce forecasts.

Be aware that that there are very small differences in the standard errors “se”, presented between
parenthesis. The average length of all the intervals, Lm, is larger when a correction is performed.
Most often, the interval length for none underestimates the theoretical length, while bias correction
renders intervals with length closer to the theoretical length reported. Last, CQm is never worse for
the estimations with correction, with the exception of Y25 for h = 1. Recall that a value of CQm =

0 would mean a perfect estimation in the sense that both coverage and length coincide with the
theoretical values.

Table 2 corresponds to a sample size T = 100. Cm of BC and RF are always better than that for
none. And again, the improvement of using corrections is more noticeable in long (h = 10) than short
horizons (h = 1). The gains in Cm of using BC or RF are smaller than those for the smaller sample
size of T = 50, which is consistent with the idea that, the smaller the sample, the greater the bias,
and the more useful the role of bias correction in the AR estimates. Lm continues to be greater when
a correction is performed, and in most cases closer to Lt. Furthermore, in some cases, for the shortest
horizons (h = 1) the value of CQm for none results equal than that for BC or RF.

Table 3 for T = 200 obtains that coverage Cm is always better for BC and RF than for none, and
like in the previous cases, the improvement is more noticeable for long than for short horizons. As
expected, the improvement in terms of coverage tends to be smaller (across forecasting horizons and
estimation techniques) than for the smaller sample sizes. Like in the previous cases, Lm tends to be
greater (and closer to Lt) when some type of correction is performed. CQm tends to be better (equal
for h = 1) when performing a correction, though the improvements are usually not as good as those
for smaller sample sizes. Finally, as expected, the behavior (in terms of Cm, Lm, and CQm) of the three
procedures improves with the series’ length.

Tables 4 to 6 provide with the results when the factors follow AR(2) models instead. The two
roots for the characteristic equation of the factors are: a1

F1 = 0.50, a2
F1 = 0.975, a1

F2 = 0.50, a2
F2 = 0.90.

The findings are similar to those obtained for AR(1) models. As before, the improvements from using
small sample bias corrections deteriorate as the sample size increases from T = 50 to T = 200. Again,
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the improvements from the corrections are more noticeable as the prediction horizon increases. And
even though coverage is always better for the estimations with bias correction, the interval length Lm,
and CQm are sometimes similar for corrected and none, specially for h = 1.

4.2. Number of Factors and AR orders Unknown

We consider a model of two factors in this experiment, and use a sample size of T = 100 (see
Appendix C for other values of T). The number of factors is estimated by IC3 of Bai and Ng (2002), as
explained in Sub-Section 2.1. This criterion correctly estimated the number of factors R in more than
99.9% of cases.

We consider factors that are AR(2), as Clements and Kim (2007) explain, in order to allow under
and over specification of p. The lag order estimated is restricted to at most six, and for selection
criteria we compare AICc and BIC. We did not endogenise the selection of p in the bootstrap algorithm
because of the small improvements obtained by doing so in Clements and Kim (2007).

Table 7 presents the results when we use BIC as the criteria for selecting p, and Table 8 presents
the results when AICc is the criteria for selecting p.

In both cases, for the selected series coverage Cm, length Lm, and CQ tend to be better for
the models that use bias-corrected estimators than for none (the correction never results in worse
off results than none). Furthermore, we can verify the same pattern than in the previous section:
improvements become more noticeable the longer the forecasting horizon.

Last, comparing the two selection criteria we can see that BIC does a much better job selecting p
than AICc (see Table 9 for a comparison of the distribution of p̂), and it translates in better values of
Cm as well as a slight general improvement in CQm.
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Table 1. Results of Monte Carlo simulation, 10,000 replications. Five representative time series created
using two common factors, both following AR(1) models with normal errors. Model with coefficients
φF1 = 0.975, φF2 = 0.90. T = 50. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 90.68 (0.052) 0.98 (0.001) 1.05 (0.000) 0.11
BC 91.11 (0.049) 0.99 (0.001) 1.05 (0.000) 0.10
RF 91.30 (0.048) 0.99 (0.001) 1.05 (0.000) 0.09

h=5 none 85.29 (0.088) 1.67 (0.003) 2.01 (0.001) 0.27
BC 88.91 (0.077) 1.87 (0.004) 2.01 (0.001) 0.13
RF 90.25 (0.072) 1.92 (0.004) 2.01 (0.001) 0.10

h=10 none 80.36 (0.112) 1.92 (0.005) 2.55 (0.001) 0.40
BC 86.33 (0.105) 2.34 (0.006) 2.55 (0.001) 0.17
RF 89.11 (0.094) 2.47 (0.007) 2.55 (0.001) 0.09

Y2 h=1 none 87.36 (0.059) 0.71 (0.001) 0.84 (0.000) 0.24
BC 87.92 (0.057) 0.72 (0.001) 0.84 (0.000) 0.22
RF 88.17 (0.055) 0.72 (0.001) 0.84 (0.000) 0.22

h=5 none 83.73 (0.090) 1.30 (0.002) 1.63 (0.001) 0.33
BC 87.78 (0.080) 1.45 (0.003) 1.63 (0.001) 0.19
RF 89.54 (0.074) 1.48 (0.003) 1.63 (0.001) 0.15

h=10 none 77.99 (0.121) 1.54 (0.004) 2.15 (0.001) 0.46
BC 84.86 (0.114) 1.89 (0.005) 2.15 (0.001) 0.23
RF 88.19 (0.105) 1.98 (0.005) 2.15 (0.001) 0.15

Y5 h=1 none 91.15 (0.048) 1.55 (0.002) 1.65 (0.001) 0.10
BC 91.58 (0.045) 1.57 (0.002) 1.65 (0.001) 0.09
RF 91.84 (0.044) 1.57 (0.002) 1.65 (0.001) 0.08

h=5 none 84.93 (0.088) 2.77 (0.005) 3.38 (0.001) 0.29
BC 88.79 (0.076) 3.10 (0.006) 3.38 (0.001) 0.15
RF 90.41 (0.070) 3.18 (0.006) 3.38 (0.001) 0.11

h=10 none 79.16 (0.116) 3.26 (0.008) 4.43 (0.002) 0.43
BC 85.71 (0.109) 4.00 (0.010) 4.43 (0.002) 0.19
RF 88.90 (0.097) 4.19 (0.011) 4.43 (0.002) 0.12

Y10 h=1 none 92.13 (0.051) 1.13 (0.002) 1.13 (0.000) 0.03
BC 92.48 (0.048) 1.14 (0.002) 1.13 (0.000) 0.03
RF 92.56 (0.048) 1.14 (0.002) 1.13 (0.000) 0.03

h=5 none 86.74 (0.085) 1.78 (0.004) 2.05 (0.001) 0.22
BC 89.83 (0.077) 1.99 (0.005) 2.05 (0.001) 0.08
RF 90.67 (0.075) 2.05 (0.005) 2.05 (0.001) 0.05

h=10 none 83.36 (0.101) 1.95 (0.005) 2.43 (0.001) 0.32
BC 87.87 (0.099) 2.36 (0.007) 2.43 (0.001) 0.10
RF 89.64 (0.092) 2.50 (0.008) 2.43 (0.001) 0.09

Y25 h=1 none 92.78 (0.048) 1.66 (0.003) 1.64 (0.001) 0.04
BC 93.14 (0.045) 1.68 (0.003) 1.64 (0.001) 0.04
RF 93.25 (0.044) 1.68 (0.003) 1.64 (0.001) 0.05

h=5 none 86.66 (0.085) 2.66 (0.005) 3.07 (0.001) 0.22
BC 89.83 (0.077) 2.97 (0.007) 3.07 (0.001) 0.09
RF 90.82 (0.073) 3.06 (0.007) 3.07 (0.001) 0.05

h=10 none 82.85 (0.104) 2.94 (0.007) 3.71 (0.002) 0.33
BC 87.62 (0.101) 3.56 (0.010) 3.71 (0.002) 0.12
RF 89.66 (0.090) 3.77 (0.011) 3.71 (0.002) 0.07
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Table 2. Results of Monte Carlo simulation, 10,000 replications. Five representative time series created
using two common factors, both following AR(1) models with normal errors. Model with coefficients
φF1 = 0.975, φF2 = 0.90. T = 100. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 91.93 (0.037) 0.99 (0.001) 1.05 (0.000) 0.09
BC 92.06 (0.036) 0.99 (0.001) 1.05 (0.000) 0.09
RF 92.13 (0.036) 1.00 (0.001) 1.05 (0.000) 0.08

h=5 none 89.84 (0.057) 1.82 (0.003) 2.01 (0.001) 0.15
BC 91.77 (0.049) 1.94 (0.003) 2.01 (0.001) 0.07
RF 92.26 (0.047) 1.97 (0.003) 2.01 (0.001) 0.05

h=10 none 87.01 (0.076) 2.16 (0.004) 2.55 (0.001) 0.23
BC 90.53 (0.067) 2.45 (0.005) 2.55 (0.001) 0.08
RF 91.55 (0.061) 2.52 (0.005) 2.55 (0.001) 0.05

Y2 h=1 none 89.50 (0.040) 0.73 (0.001) 0.84 (0.000) 0.19
BC 89.64 (0.039) 0.73 (0.001) 0.84 (0.000) 0.18
RF 89.82 (0.039) 0.74 (0.001) 0.84 (0.000) 0.18

h=5 none 89.08 (0.057) 1.43 (0.002) 1.63 (0.001) 0.19
BC 91.21 (0.049) 1.53 (0.002) 1.63 (0.001) 0.10
RF 91.95 (0.045) 1.56 (0.002) 1.63 (0.001) 0.08

h=10 none 85.86 (0.082) 1.77 (0.003) 2.15 (0.001) 0.27
BC 89.92 (0.072) 2.03 (0.004) 2.15 (0.001) 0.11
RF 91.25 (0.066) 2.09 (0.004) 2.15 (0.001) 0.07

Y5 h=1 none 92.66 (0.033) 1.59 (0.002) 1.65 (0.001) 0.06
BC 92.79 (0.032) 1.59 (0.002) 1.65 (0.001) 0.06
RF 92.93 (0.031) 1.60 (0.002) 1.65 (0.001) 0.05

h=5 none 89.89 (0.056) 3.04 (0.004) 3.38 (0.001) 0.15
BC 91.89 (0.048) 3.26 (0.004) 3.38 (0.001) 0.07
RF 92.54 (0.045) 3.30 (0.004) 3.38 (0.001) 0.05

h=10 none 86.55 (0.080) 3.72 (0.007) 4.43 (0.002) 0.25
BC 90.41 (0.069) 4.25 (0.008) 4.43 (0.002) 0.09
RF 91.64 (0.064) 4.37 (0.008) 4.43 (0.002) 0.05

Y10 h=1 none 93.00 (0.034) 1.12 (0.001) 1.14 (0.000) 0.03
BC 93.11 (0.034) 1.12 (0.001) 1.14 (0.000) 0.03
RF 93.11 (0.034) 1.12 (0.001) 1.14 (0.000) 0.03

h=5 none 90.74 (0.054) 1.91 (0.003) 2.05 (0.001) 0.12
BC 92.40 (0.049) 2.03 (0.003) 2.05 (0.001) 0.04
RF 92.54 (0.049) 2.05 (0.003) 2.05 (0.001) 0.03

h=10 none 88.67 (0.067) 2.14 (0.004) 2.42 (0.001) 0.18
BC 91.33 (0.063) 2.40 (0.005) 2.42 (0.001) 0.05
RF 91.76 (0.062) 2.45 (0.005) 2.42 (0.001) 0.05

Y25 h=1 none 93.73 (0.032) 1.66 (0.002) 1.64 (0.001) 0.03
BC 93.85 (0.031) 1.66 (0.002) 1.64 (0.001) 0.03
RF 93.87 (0.031) 1.67 (0.002) 1.64 (0.001) 0.03

h=5 none 90.84 (0.054) 2.86 (0.004) 3.07 (0.001) 0.11
BC 92.54 (0.048) 3.05 (0.005) 3.07 (0.001) 0.03
RF 92.76 (0.047) 3.09 (0.005) 3.07 (0.001) 0.03

h=10 none 88.49 (0.069) 3.26 (0.006) 3.71 (0.002) 0.19
BC 91.35 (0.063) 3.67 (0.007) 3.71 (0.002) 0.05
RF 91.94 (0.060) 3.76 (0.008) 3.71 (0.002) 0.05
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Table 3. Results of Monte Carlo simulation, 10,000 replications. Five representative time series created
using two common factors, both following AR(1) models with normal errors. Model with coefficients
φF1 = 0.975, φF2 = 0.90. T = 200. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 92.55 (0.027) 1.00 (0.001) 1.05 (0.000) 0.08
BC 92.59 (0.027) 1.00 (0.001) 1.05 (0.000) 0.08
RF 92.59 (0.027) 1.00 (0.001) 1.05 (0.000) 0.08

h=5 none 92.36 (0.035) 1.91 (0.002) 2.01 (0.001) 0.08
BC 93.29 (0.032) 1.98 (0.002) 2.01 (0.001) 0.03
RF 93.42 (0.031) 1.99 (0.002) 2.01 (0.001) 0.03

h=10 none 90.96 (0.047) 2.33 (0.003) 2.55 (0.001) 0.13
BC 92.81 (0.041) 2.51 (0.003) 2.55 (0.001) 0.04
RF 93.11 (0.040) 2.55 (0.003) 2.55 (0.001) 0.02

Y2 h=1 none 90.66 (0.029) 0.74 (0.001) 0.84 (0.000) 0.16
BC 90.69 (0.029) 0.74 (0.001) 0.84 (0.000) 0.16
RF 90.71 (0.029) 0.75 (0.001) 0.84 (0.000) 0.16

h=5 none 91.86 (0.034) 1.51 (0.001) 1.63 (0.001) 0.10
BC 92.93 (0.030) 1.58 (0.001) 1.63 (0.001) 0.06
RF 93.10 (0.029) 1.59 (0.001) 1.63 (0.001) 0.05

h=10 none 90.44 (0.049) 1.94 (0.002) 2.15 (0.001) 0.15
BC 92.53 (0.043) 2.10 (0.003) 2.15 (0.001) 0.05
RF 92.91 (0.041) 2.14 (0.003) 2.15 (0.001) 0.02

Y5 h=1 none 93.47 (0.024) 1.61 (0.001) 1.65 (0.001) 0.04
BC 93.52 (0.024) 1.61 (0.001) 1.65 (0.001) 0.04
RF 93.51 (0.024) 1.61 (0.001) 1.65 (0.001) 0.04

h=5 none 92.52 (0.034) 3.21 (0.003) 3.37 (0.001) 0.07
BC 93.50 (0.030) 3.34 (0.003) 3.37 (0.001) 0.03
RF 93.68 (0.029) 3.37 (0.003) 3.37 (0.001) 0.02

h=10 none 90.93 (0.048) 4.05 (0.005) 4.42 (0.002) 0.13
BC 92.89 (0.042) 4.39 (0.006) 4.42 (0.002) 0.03
RF 93.24 (0.040) 4.47 (0.006) 4.42 (0.002) 0.03

Y10 h=1 none 93.33 (0.026) 1.11 (0.001) 1.14 (0.000) 0.04
BC 93.36 (0.026) 1.11 (0.001) 1.14 (0.000) 0.04
RF 93.35 (0.026) 1.11 (0.001) 1.14 (0.000) 0.04

h=5 none 92.84 (0.034) 1.98 (0.002) 2.05 (0.001) 0.06
BC 93.66 (0.031) 2.04 (0.002) 2.05 (0.001) 0.02
RF 93.68 (0.031) 2.05 (0.002) 2.05 (0.001) 0.01

h=10 none 91.68 (0.044) 2.27 (0.003) 2.42 (0.001) 0.10
BC 93.11 (0.040) 2.41 (0.003) 2.42 (0.001) 0.03
RF 93.21 (0.040) 2.43 (0.003) 2.42 (0.001) 0.02

Y25 h=1 none 94.09 (0.024) 1.65 (0.001) 1.64 (0.001) 0.02
BC 94.11 (0.024) 1.65 (0.001) 1.64 (0.001) 0.02
RF 94.11 (0.024) 1.65 (0.001) 1.64 (0.001) 0.02

h=5 none 93.00 (0.034) 2.98 (0.003) 3.07 (0.001) 0.05
BC 93.83 (0.031) 3.09 (0.003) 3.07 (0.001) 0.02
RF 93.84 (0.031) 3.10 (0.003) 3.07 (0.001) 0.02

h=10 none 91.72 (0.044) 3.48 (0.005) 3.70 (0.002) 0.10
BC 93.26 (0.039) 3.71 (0.005) 3.70 (0.002) 0.02
RF 93.37 (0.039) 3.74 (0.005) 3.70 (0.002) 0.03
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Table 4. Results of Monte Carlo simulation, 10,000 replications. Five representative time series created
using two common factors, both following AR(2) models with normal errors. Model with coefficients
φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 50. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 89.88 (0.059) 0.98 (0.001) 1.05 (0.000) 0.12
BC 90.46 (0.056) 1.00 (0.001) 1.05 (0.000) 0.10
RF 90.72 (0.054) 1.00 (0.002) 1.05 (0.000) 0.10

h=5 none 83.06 (0.116) 2.75 (0.006) 3.29 (0.001) 0.29
BC 87.28 (0.101) 3.06 (0.007) 3.29 (0.001) 0.15
RF 88.46 (0.089) 3.06 (0.007) 3.29 (0.001) 0.14

h=10 none 76.52 (0.144) 3.39 (0.010) 4.61 (0.002) 0.46
BC 83.76 (0.137) 4.22 (0.013) 4.61 (0.002) 0.20
RF 86.67 (0.113) 4.29 (0.013) 4.61 (0.002) 0.16

Y2 h=1 none 86.06 (0.065) 0.70 (0.001) 0.84 (0.000) 0.26
BC 86.71 (0.062) 0.71 (0.001) 0.84 (0.000) 0.25
RF 87.10 (0.061) 0.71 (0.001) 0.84 (0.000) 0.24

h=5 none 81.90 (0.117) 2.13 (0.005) 2.65 (0.001) 0.33
BC 86.22 (0.105) 2.37 (0.006) 2.65 (0.001) 0.20
RF 87.96 (0.090) 2.37 (0.005) 2.65 (0.001) 0.18

h=10 none 74.35 (0.152) 2.75 (0.008) 3.89 (0.002) 0.51
BC 82.22 (0.146) 3.41 (0.011) 3.89 (0.002) 0.26
RF 85.96 (0.120) 3.47 (0.010) 3.89 (0.002) 0.20

Y5 h=1 none 90.06 (0.055) 1.53 (0.002) 1.65 (0.001) 0.12
BC 90.66 (0.052) 1.55 (0.002) 1.65 (0.001) 0.10
RF 91.00 (0.050) 1.56 (0.002) 1.65 (0.001) 0.10

h=5 none 82.51 (0.116) 4.55 (0.010) 5.55 (0.002) 0.31
BC 86.83 (0.101) 5.07 (0.012) 5.55 (0.002) 0.17
RF 88.41 (0.087) 5.06 (0.011) 5.55 (0.002) 0.16

h=10 none 75.10 (0.148) 5.79 (0.018) 8.08 (0.003) 0.49
BC 82.87 (0.141) 7.20 (0.023) 8.08 (0.003) 0.24
RF 86.36 (0.115) 7.32 (0.022) 8.08 (0.003) 0.18

Y10 h=1 none 91.51 (0.061) 1.15 (0.002) 1.13 (0.000) 0.05
BC 92.00 (0.056) 1.16 (0.002) 1.13 (0.000) 0.06
RF 92.20 (0.055) 1.17 (0.002) 1.13 (0.000) 0.06

h=5 none 84.21 (0.117) 2.94 (0.007) 3.36 (0.001) 0.24
BC 88.10 (0.103) 3.28 (0.008) 3.36 (0.001) 0.10
RF 88.78 (0.093) 3.28 (0.008) 3.36 (0.001) 0.09

h=10 none 79.46 (0.136) 3.42 (0.010) 4.37 (0.002) 0.38
BC 85.39 (0.130) 4.24 (0.014) 4.37 (0.002) 0.13
RF 87.24 (0.110) 4.33 (0.014) 4.37 (0.002) 0.09

Y25 h=1 none 92.14 (0.057) 1.69 (0.003) 1.64 (0.001) 0.07
BC 92.66 (0.053) 1.71 (0.003) 1.64 (0.001) 0.07
RF 92.85 (0.051) 1.72 (0.003) 1.64 (0.001) 0.07

h=5 none 84.19 (0.115) 4.41 (0.011) 5.06 (0.002) 0.24
BC 88.16 (0.100) 4.92 (0.012) 5.06 (0.002) 0.10
RF 88.94 (0.091) 4.92 (0.012) 5.06 (0.002) 0.09

h=10 none 78.91 (0.136) 5.21 (0.015) 6.73 (0.003) 0.40
BC 85.20 (0.128) 6.46 (0.021) 6.73 (0.003) 0.14
RF 87.36 (0.109) 6.59 (0.021) 6.73 (0.003) 0.10
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Table 5. Results of Monte Carlo simulation, 10,000 replications. Five representative time series created
using two common factors, both following AR(2) models with normal errors. Model with coefficients
φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 100. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 91.70 (0.041) 1.00 (0.001) 1.05 (0.000) 0.08
BC 91.91 (0.039) 1.01 (0.001) 1.05 (0.000) 0.08
RF 91.97 (0.039) 1.01 (0.001) 1.05 (0.000) 0.07

h=5 none 89.55 (0.067) 3.02 (0.005) 3.29 (0.001) 0.14
BC 91.39 (0.057) 3.20 (0.005) 3.29 (0.001) 0.07
RF 91.52 (0.054) 3.19 (0.005) 3.29 (0.001) 0.07

h=10 none 85.91 (0.092) 3.92 (0.008) 4.61 (0.002) 0.24
BC 89.71 (0.079) 4.45 (0.010) 4.61 (0.002) 0.09
RF 90.43 (0.071) 4.49 (0.010) 4.61 (0.002) 0.07

Y2 h=1 none 89.11 (0.043) 0.73 (0.001) 0.84 (0.000) 0.19
BC 89.39 (0.042) 0.74 (0.001) 0.84 (0.000) 0.18
RF 89.50 (0.041) 0.74 (0.001) 0.84 (0.000) 0.18

h=5 none 89.12 (0.066) 2.38 (0.004) 2.65 (0.001) 0.16
BC 91.00 (0.057) 2.52 (0.004) 2.65 (0.001) 0.09
RF 91.42 (0.051) 2.51 (0.004) 2.65 (0.001) 0.09

h=10 none 85.03 (0.096) 3.25 (0.007) 3.89 (0.002) 0.27
BC 89.14 (0.084) 3.69 (0.008) 3.89 (0.002) 0.11
RF 90.25 (0.073) 3.71 (0.008) 3.89 (0.002) 0.09

Y5 h=1 none 92.31 (0.037) 1.59 (0.002) 1.65 (0.001) 0.06
BC 92.52 (0.035) 1.60 (0.002) 1.65 (0.001) 0.06
RF 92.64 (0.035) 1.60 (0.002) 1.65 (0.001) 0.05

h=5 none 89.42 (0.067) 5.06 (0.008) 5.55 (0.002) 0.15
BC 91.29 (0.057) 5.36 (0.008) 5.55 (0.002) 0.07
RF 91.62 (0.052) 5.34 (0.008) 5.55 (0.002) 0.07

h=10 none 85.39 (0.095) 6.80 (0.014) 8.08 (0.003) 0.26
BC 89.40 (0.082) 7.73 (0.016) 8.08 (0.003) 0.10
RF 90.39 (0.072) 7.78 (0.016) 8.08 (0.003) 0.09

Y10 h=1 none 92.84 (0.040) 1.14 (0.001) 1.13 (0.000) 0.03
BC 93.01 (0.039) 1.15 (0.001) 1.13 (0.000) 0.03
RF 93.00 (0.039) 1.15 (0.001) 1.13 (0.000) 0.03

h=5 none 90.18 (0.066) 3.16 (0.005) 3.35 (0.001) 0.11
BC 91.84 (0.058) 3.34 (0.006) 3.35 (0.001) 0.04
RF 91.69 (0.057) 3.33 (0.006) 3.35 (0.001) 0.04

h=10 none 87.20 (0.085) 3.82 (0.008) 4.37 (0.002) 0.21
BC 90.37 (0.077) 4.33 (0.010) 4.37 (0.002) 0.06
RF 90.48 (0.073) 4.37 (0.010) 4.37 (0.002) 0.05

Y25 h=1 none 93.53 (0.037) 1.69 (0.002) 1.64 (0.001) 0.05
BC 93.66 (0.036) 1.70 (0.002) 1.64 (0.001) 0.05
RF 93.67 (0.036) 1.70 (0.002) 1.64 (0.001) 0.05

h=5 none 90.21 (0.065) 4.75 (0.008) 5.05 (0.002) 0.11
BC 91.89 (0.057) 5.04 (0.008) 5.05 (0.002) 0.04
RF 91.82 (0.055) 5.02 (0.008) 5.05 (0.002) 0.04

h=10 none 87.03 (0.085) 5.86 (0.012) 6.72 (0.003) 0.21
BC 90.29 (0.076) 6.63 (0.014) 6.72 (0.003) 0.06
RF 90.59 (0.071) 6.70 (0.014) 6.72 (0.003) 0.05



16 of 42

Table 6. Results of Monte Carlo simulation, 10,000 replications. Five representative time series created
using two common factors, both following AR(2) models with normal errors. Model with coefficients
φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 200. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 92.51 (0.029) 1.01 (0.001) 1.05 (0.000) 0.07
BC 92.55 (0.029) 1.01 (0.001) 1.05 (0.000) 0.07
RF 92.58 (0.029) 1.01 (0.001) 1.05 (0.000) 0.07

h=5 none 92.36 (0.039) 3.15 (0.004) 3.29 (0.001) 0.07
BC 93.14 (0.035) 3.25 (0.004) 3.29 (0.001) 0.03
RF 93.05 (0.035) 3.24 (0.004) 3.29 (0.001) 0.03

h=10 none 90.67 (0.053) 4.25 (0.006) 4.61 (0.002) 0.12
BC 92.47 (0.046) 4.57 (0.007) 4.61 (0.002) 0.04
RF 92.48 (0.045) 4.58 (0.007) 4.61 (0.002) 0.03

Y2 h=1 none 90.50 (0.030) 0.75 (0.001) 0.84 (0.000) 0.16
BC 90.57 (0.030) 0.75 (0.001) 0.84 (0.000) 0.16
RF 90.65 (0.030) 0.75 (0.001) 0.84 (0.000) 0.15

h=5 none 92.16 (0.038) 2.51 (0.003) 2.65 (0.001) 0.08
BC 92.95 (0.035) 2.59 (0.003) 2.65 (0.001) 0.04
RF 92.94 (0.033) 2.59 (0.003) 2.65 (0.001) 0.04

h=10 none 90.38 (0.055) 3.55 (0.005) 3.89 (0.002) 0.13
BC 92.23 (0.049) 3.83 (0.005) 3.89 (0.002) 0.04
RF 92.37 (0.046) 3.84 (0.005) 3.89 (0.002) 0.04

Y5 h=1 none 93.35 (0.026) 1.62 (0.001) 1.65 (0.001) 0.04
BC 93.41 (0.026) 1.62 (0.001) 1.65 (0.001) 0.03
RF 93.47 (0.025) 1.62 (0.001) 1.65 (0.001) 0.03

h=5 none 92.42 (0.038) 5.33 (0.006) 5.56 (0.002) 0.07
BC 93.19 (0.034) 5.49 (0.006) 5.56 (0.002) 0.03
RF 93.14 (0.033) 5.48 (0.006) 5.56 (0.002) 0.03

h=10 none 90.58 (0.054) 7.43 (0.010) 8.08 (0.003) 0.13
BC 92.41 (0.048) 8.00 (0.011) 8.08 (0.003) 0.04
RF 92.53 (0.045) 8.03 (0.011) 8.08 (0.003) 0.03

Y10 h=1 none 93.24 (0.029) 1.13 (0.001) 1.13 (0.000) 0.02
BC 93.28 (0.029) 1.13 (0.001) 1.13 (0.000) 0.02
RF 93.27 (0.029) 1.13 (0.001) 1.13 (0.000) 0.02

h=5 none 92.56 (0.038) 3.24 (0.004) 3.35 (0.001) 0.06
BC 93.29 (0.035) 3.34 (0.004) 3.35 (0.001) 0.02
RF 93.11 (0.036) 3.33 (0.004) 3.35 (0.001) 0.03

h=10 none 91.04 (0.050) 4.06 (0.006) 4.37 (0.002) 0.11
BC 92.65 (0.045) 4.34 (0.006) 4.37 (0.002) 0.03
RF 92.49 (0.047) 4.34 (0.006) 4.37 (0.002) 0.03

Y25 h=1 none 93.91 (0.027) 1.67 (0.001) 1.64 (0.001) 0.03
BC 93.94 (0.027) 1.67 (0.001) 1.64 (0.001) 0.03
RF 93.94 (0.028) 1.68 (0.001) 1.64 (0.001) 0.04

h=5 none 92.57 (0.037) 4.89 (0.006) 5.06 (0.002) 0.06
BC 93.29 (0.034) 5.03 (0.006) 5.06 (0.002) 0.02
RF 93.17 (0.035) 5.02 (0.006) 5.06 (0.002) 0.03

h=10 none 90.96 (0.050) 6.23 (0.009) 6.73 (0.003) 0.12
BC 92.54 (0.045) 6.66 (0.010) 6.73 (0.003) 0.04
RF 92.46 (0.046) 6.67 (0.010) 6.73 (0.003) 0.04
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Table 7. Results of Monte Carlo simulation, 10,000 replications. Five representative time series created
with both common factors following AR(2) processes with normal errors. Model with coefficients
φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 100. Nominal coverage 95%. IC3 used in

the estimation of R, BIC used in the selection of p̂.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 91.39 (0.042) 1.00 (0.001) 1.05 (0.000) 0.09
BC 91.55 (0.040) 1.00 (0.001) 1.05 (0.000) 0.09
RF 91.66 (0.040) 1.00 (0.001) 1.05 (0.000) 0.08

h=5 none 89.27 (0.068) 3.01 (0.005) 3.29 (0.001) 0.15
BC 91.07 (0.059) 3.18 (0.005) 3.29 (0.001) 0.07
RF 91.24 (0.056) 3.17 (0.005) 3.29 (0.001) 0.07

h=10 none 85.66 (0.094) 3.92 (0.008) 4.61 (0.002) 0.25
BC 89.43 (0.082) 4.45 (0.010) 4.61 (0.002) 0.09
RF 90.16 (0.073) 4.48 (0.010) 4.61 (0.002) 0.08

Y2 h=1 none 88.72 (0.045) 0.73 (0.001) 0.84 (0.000) 0.20
BC 88.95 (0.045) 0.73 (0.001) 0.84 (0.000) 0.20
RF 89.10 (0.043) 0.73 (0.001) 0.84 (0.000) 0.19

h=5 none 88.71 (0.071) 2.37 (0.004) 2.65 (0.001) 0.17
BC 90.56 (0.063) 2.51 (0.004) 2.65 (0.001) 0.10
RF 91.02 (0.056) 2.50 (0.004) 2.65 (0.001) 0.10

h=10 none 84.70 (0.102) 3.25 (0.007) 3.88 (0.002) 0.27
BC 88.75 (0.091) 3.69 (0.008) 3.88 (0.002) 0.12
RF 89.92 (0.078) 3.71 (0.008) 3.88 (0.002) 0.10

Y5 h=1 none 91.98 (0.039) 1.58 (0.002) 1.65 (0.001) 0.07
BC 92.18 (0.038) 1.59 (0.002) 1.65 (0.001) 0.07
RF 92.32 (0.037) 1.59 (0.002) 1.65 (0.001) 0.06

h=5 none 89.07 (0.069) 5.04 (0.008) 5.55 (0.002) 0.15
BC 90.91 (0.060) 5.33 (0.009) 5.55 (0.002) 0.08
RF 91.25 (0.055) 5.31 (0.008) 5.55 (0.002) 0.08

h=10 none 85.10 (0.099) 6.80 (0.014) 8.07 (0.003) 0.26
BC 89.05 (0.087) 7.72 (0.017) 8.07 (0.003) 0.11
RF 90.09 (0.075) 7.76 (0.017) 8.07 (0.003) 0.09

Y10 h=1 none 92.56 (0.041) 1.14 (0.001) 1.14 (0.000) 0.03
BC 92.70 (0.040) 1.14 (0.001) 1.14 (0.000) 0.03
RF 92.73 (0.040) 1.14 (0.001) 1.14 (0.000) 0.03

h=5 none 89.89 (0.068) 3.15 (0.005) 3.35 (0.001) 0.12
BC 91.54 (0.061) 3.33 (0.006) 3.35 (0.001) 0.04
RF 91.46 (0.060) 3.32 (0.006) 3.35 (0.001) 0.05

h=10 none 86.98 (0.087) 3.83 (0.008) 4.37 (0.002) 0.21
BC 90.09 (0.080) 4.33 (0.010) 4.37 (0.002) 0.06
RF 90.24 (0.076) 4.36 (0.010) 4.37 (0.002) 0.05

Y25 h=1 none 93.26 (0.039) 1.68 (0.002) 1.64 (0.001) 0.04
BC 93.41 (0.038) 1.69 (0.002) 1.64 (0.001) 0.05
RF 93.45 (0.037) 1.69 (0.002) 1.64 (0.001) 0.05

h=5 none 89.85 (0.068) 4.75 (0.008) 5.06 (0.002) 0.12
BC 91.55 (0.060) 5.02 (0.009) 5.06 (0.002) 0.04
RF 91.51 (0.058) 5.01 (0.008) 5.06 (0.002) 0.05

h=10 none 86.69 (0.090) 5.88 (0.012) 6.72 (0.003) 0.21
BC 90.04 (0.081) 6.65 (0.015) 6.72 (0.003) 0.06
RF 90.35 (0.074) 6.68 (0.015) 6.72 (0.003) 0.05
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Table 8. Results of Monte Carlo simulation, 10,000 replications. Five representative time series created
using two common factors, both following AR(2) models with normal errors. Model with coefficients
φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 100. Nominal coverage 95%. IC3 used in

the estimation of R, AICc used in the selection of p̂.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 90.73 (0.045) 0.98 (0.001) 1.05 (0.000) 0.11
BC 90.88 (0.044) 0.99 (0.001) 1.05 (0.000) 0.11
RF 91.00 (0.044) 0.99 (0.001) 1.05 (0.000) 0.10

h=5 none 88.35 (0.073) 2.97 (0.005) 3.29 (0.001) 0.17
BC 90.27 (0.065) 3.14 (0.005) 3.29 (0.001) 0.09
RF 90.42 (0.061) 3.12 (0.005) 3.29 (0.001) 0.10

h=10 none 84.77 (0.100) 3.90 (0.008) 4.61 (0.002) 0.26
BC 88.59 (0.089) 4.41 (0.010) 4.61 (0.002) 0.11
RF 89.25 (0.079) 4.39 (0.010) 4.61 (0.002) 0.11

Y2 h=1 none 87.98 (0.048) 0.72 (0.001) 0.84 (0.000) 0.22
BC 88.27 (0.048) 0.72 (0.001) 0.84 (0.000) 0.21
RF 88.41 (0.047) 0.72 (0.001) 0.84 (0.000) 0.21

h=5 none 87.75 (0.076) 2.34 (0.004) 2.65 (0.001) 0.19
BC 89.69 (0.069) 2.47 (0.004) 2.65 (0.001) 0.12
RF 90.15 (0.062) 2.46 (0.004) 2.65 (0.001) 0.12

h=10 none 83.76 (0.109) 3.22 (0.007) 3.88 (0.002) 0.29
BC 87.84 (0.099) 3.65 (0.008) 3.88 (0.002) 0.14
RF 88.95 (0.084) 3.63 (0.008) 3.88 (0.002) 0.13

Y5 h=1 none 91.35 (0.042) 1.56 (0.002) 1.65 (0.001) 0.09
BC 91.53 (0.041) 1.57 (0.002) 1.65 (0.001) 0.08
RF 91.68 (0.040) 1.57 (0.002) 1.65 (0.001) 0.08

h=5 none 88.13 (0.074) 4.96 (0.008) 5.55 (0.002) 0.18
BC 90.09 (0.066) 5.26 (0.008) 5.55 (0.002) 0.10
RF 90.46 (0.060) 5.23 (0.008) 5.55 (0.002) 0.11

h=10 none 84.19 (0.106) 6.75 (0.015) 8.07 (0.003) 0.28
BC 88.20 (0.095) 7.64 (0.017) 8.07 (0.003) 0.12
RF 89.16 (0.081) 7.61 (0.017) 8.07 (0.003) 0.12

Y10 h=1 none 91.91 (0.047) 1.12 (0.001) 1.14 (0.000) 0.04
BC 92.00 (0.046) 1.13 (0.001) 1.14 (0.000) 0.04
RF 92.07 (0.046) 1.13 (0.001) 1.14 (0.000) 0.04

h=5 none 89.02 (0.076) 3.12 (0.005) 3.35 (0.001) 0.13
BC 90.76 (0.068) 3.29 (0.006) 3.35 (0.001) 0.06
RF 90.60 (0.066) 3.27 (0.006) 3.35 (0.001) 0.07

h=10 none 86.09 (0.094) 3.81 (0.008) 4.37 (0.002) 0.22
BC 89.26 (0.088) 4.28 (0.010) 4.37 (0.002) 0.08
RF 89.27 (0.082) 4.27 (0.010) 4.37 (0.002) 0.08

Y25 h=1 none 92.55 (0.044) 1.66 (0.002) 1.64 (0.001) 0.04
BC 92.75 (0.043) 1.66 (0.002) 1.64 (0.001) 0.04
RF 92.80 (0.043) 1.67 (0.002) 1.64 (0.001) 0.04

h=5 none 88.98 (0.075) 4.69 (0.008) 5.06 (0.002) 0.14
BC 90.78 (0.066) 4.96 (0.009) 5.06 (0.002) 0.06
RF 90.70 (0.064) 4.93 (0.008) 5.06 (0.002) 0.07

h=10 none 85.80 (0.097) 5.84 (0.013) 6.72 (0.003) 0.23
BC 89.17 (0.090) 6.57 (0.015) 6.72 (0.003) 0.08
RF 89.38 (0.082) 6.55 (0.015) 6.72 (0.003) 0.08
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Table 9. Comparison of relative frequencies in the estimation of p̂ by BIC and AICc. The values
correspond to a Monte Carlo simulation with 10,000 replications. Two common factors, both following
AR(2) models with normal errors. Model with coefficients φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 =

1.4, φF2
2 = −0.45. T = 100. Nominal coverage 95%.

Factor p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ = 5 p̂ = 6
BIC
F1 0.23 82.47 10.15 3.94 1.85 1.36
F2 1.84 78.47 12.32 4.01 1.95 1.41
AICc
F1 0.02 36.66 16.17 13.50 14.13 19.52
F2 0.22 33.94 17.52 14.28 13.96 20.08

5. Empirical Example

As an application, we employ data of industrial production (486 seasonally adjusted monthly
observations of the Industrial Production Index, IPI, from January, 1975, to June, 2015) in 13
European countries. These include Austria, Denmark, Finland, France, Germany, Italy, Luxembourg,
Netherlands, Norway, Portugal, Spain, Sweden, and the U.K. Other European countries with
available data have been excluded for having small cross correlations with the former. See Figure
1 for a graph of the series included in the analysis.

In order to compare the results of the corrections we start with a rolling window of length T = 50,
and forecast from h = 1 to h = 12 steps ahead. This means that, for the vector of 13 countries, the
first window starts from the first observation in the data-set (January, 1975), until T = 50 (February,
1979). We work with this window to extract common factors8, specify an AR model for each factor,
and generate forecasts for the next 12 observations (March, 1979, to February, 1980). Repeating this
process to the last window (from May, 2010, to June, 2014), we obtain 424 one- to twelve-step-ahead
forecasts. The AR model for each factor is selected in each window, employing BIC. The prediction
intervals will have 95% nominal coverage rates. We also performed these estimations employing
longer windows of time T = 100 and T = 200, particularly to show how coverage rates Cm are linked
to T in this data-set.

Some additional features outside the scope of the simulations of the previous sections help
improve forecasts (equally for none, BC, and RF) in this application. Outliers are intervened
beforehand using the statistical software TRAMO, through its Matlab interface. Figure 2 shows the
series after intervening outliers. Furthermore, we obtained an important improvement of using three
rather than two common factor to reduce the dimension of this dataset. Last, while in the simulations
we know that the specific factors are white noise, in this practical application these are modeled as
AR when necessary.

The analysis is performed for the logarithm of the series, but this transformation does not affect
the conclusions.

To compare the results of using none, BC, and RF as small sample bias correction methods in the
AR models for the common factors, we present actual coverage rates Cm, mean interval lengths Lm,
and Mean Absolute Errors MAE. The MAE is a forecasting accuracy metric that helps evaluate which
alternative forecast renders results closer to the observed values. It can be calculated in the following
way,

MAEj =
1

W

W

∑
w=1

(
1
13

13

∑
i=1
|(yi,z − ŷj

i,z)|
)

, (12)

8 For an assessment of the factors’ loads see Figure 3a in Sub-Section 5.1.
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Figure 1. Industrial Production Index. Source: OECD.Stat. January, 1975 to June, 2015.
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Figure 2. Industrial Production Index. Source: OECD.Stat. January, 1975 to June, 2015. Outliers
intervention performed using TRAMO.
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where W is the number of months in the out of sample period (the total number of rolling windows),
i = 1, ..., n the series included (in this case we have n = 13), and j = {none, BC, RF}. It is calculated
for each forecasting horizon h.

5.1. Description of Loads

A feature of interest in the empirical estimation are the factors’ loads. Because we are working
with rolling windows (of diverse length T), loads are estimated together with the unobserved
common factors in each window, and may change from on window to the next. For this reason,
in Figure 3a we present the loads we would obtain for the whole dataset instead of any particular
window of time; we do this to get an approximate representation of the matrix of weights. We also
include box plots of the logarithm of centred IPI for the countries in this study, to identify similarities
and differences in the distributions by country.

Oftentimes it is possible to visually find associations between loads and patterns or groupings
in the data. The estimated weights for the first factor are highly associated to the variance of IPI in
each country (see Table 10). The weights for the second factor distinguish two groups of countries:
Denmark, Italy, Norway, Portugal, and the UK on the one hand, and Austria, Germany and, to a
lesser degree, Finland, on the other hand. Last, the weights for the third factor (which, of course,
contributes less to the total variability of the data than the other two) separate Germany and Portugal
from Italy, Spain and Sweden.

Loads for the First Factor

0.0

0.1

0.2

0.3

0.4

Loads for the Second Factor

−0.4

−0.2

0.0

0.2

0.4

A
us

tr
ia

D
en

m
ar

k

F
in

la
nd

F
ra

nc
e

G
er

m
an

y

Ita
ly

Lu
xe

m
bo

ur
g

N
et

he
rla

nd
s

N
or

w
ay

P
or

tu
ga

l

S
pa

in

S
w

ed
en U
K

Loads for the Third Factor

−0.4

−0.2

0.0

0.2

0.4

(a) Loads corresponding to three unobserved common
factors.
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country.

Figure 3. IPI complete dataset January, 1975, to June, 2015 (T = 485). Outliers intervened in the
original series using TRAMO.

5.2. Results

In Tables 11 to 13 we present the average of the results for the 13 series, and in Tables 14 to 16 we
present detailed results for four countries selected to represent diversity in coverage levels.

There are several findings. Firstly, for T = 50, the performance of the prediction intervals is short
of the 95% nominal coverage. In this regard, Clements and Kim (2007) explain that a small-sample
deterioration of the results of high-order models (they employ an AR(6) for US industrial production
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Table 10. IPI complete dataset January, 1975, to June, 2015 (T = 485). Loads of the first common factor
and variances for 13 European countries.

Loads first factor Variances IPI
Austria 0.44 0.16

Denmark 0.20 0.04
Finland 0.44 0.16
France 0.13 0.01

Germany 0.24 0.05
Italy 0.13 0.02

Luxembourg 0.35 0.10
Netherlands 0.20 0.03

Norway 0.34 0.10
Portugal 0.27 0.07

Spain 0.19 0.03
Sweden 0.29 0.07

UK 0.13 0.01

data) in comparison to low-order models (like those employed in simulations) is to be expected. The
coverage, Cm, for this empirical example, is highly responsive to the size of the historical data (T)
considered in the rolling windows: while for T = 50 we obtain Cm deteriorates to Cm = 56.50%
(h = 12, none), Table 13 shows that, for T = 200, Cm is closer to the 95% nominal coverage (the worst
coverage is Cm = 78.50%, for h = 12 in none). For h = 1, comparing Tables 11, 12, and 13 we can see
that the mean coverage, Cm, increases from 89.22 (averaging none, BC, and RF for h = 1) for T = 50, to
92.31 for T = 100, and almost reaches the nominal value for T = 200 (94.74 on average for h = 1). In
other words, large sample sizes, though not always available in practice, contribute to more accurate
forecasting intervals.

Secondly, in line with the results obtained in simulations, for one-step-ahead forecasts the
improvements of BC and RF appear small; however, as the forecasting horizon increases, Cm and
MAE reveal an evident advantage of employing the corrections, especially RF. For RF, the advantage
in comparison to none reaches up to 10.38 percentage points (see Table 11, h = 12). Last, interval
lengths Lm tend to be greater for BC and RF than for none.

Table 11. IPI forecasting results for 13 European countries. The average of the series is obtained for
Interval Coverage Cm (in %), Mean Absolute Error MAE, and Interval’s Length Lm. Standard Errors
are provided between parenthesis. T = 50.

Horizon Correction Cm (se) MAE (se) Lm (se)
h=1 none 88.82 (1.53) 1.47 (0.02) 6.03 (0.06)

BC 89.56 (1.48) 1.46 (0.02) 6.07 (0.06)
RF 89.29 (1.50) 1.46 (0.02) 6.06 (0.06)

h=6 none 71.74 (2.17) 2.78 (0.07) 7.67 (0.11)
BC 76.50 (2.05) 2.65 (0.06) 8.17 (0.13)
RF 77.60 (2.02) 2.58 (0.06) 8.21 (0.13)

h=12 none 56.50 (2.37) 4.29 (0.14) 8.46 (0.17)
BC 64.90 (2.28) 4.12 (0.13) 9.68 (0.21)
RF 66.52 (2.26) 3.85 (0.10) 9.74 (0.20)

Contrary to Cm, for this application the MAE does not seem to respond as much to sample size.
This may seem odd, but it must be considered that the number of windows included in the estimation
is smaller for Tables 12 and 13 because they have longer historical data-sets, than in Table 11.

In Tables 14 to 16 we present the results for Denmark, Finland, Luxembourg and Spain. Finland
is the country with the highest coverage Cm in the short term while Luxembourg has the lowest
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Table 12. IPI forecasting results for 13 European countries. The average of the series is obtained for
Interval Coverage Cm (in %), Mean Absolute Error MAE, and Interval’s Length Lm. Standard Errors
are provided between parenthesis. Rolling windows of size T = 100.

Horizon Correction Cm (se) MAE (se) Lm (se)
h=1 none 92.20 (1.37) 1.47 (0.02) 6.59 (0.05)

BC 92.41 (1.34) 1.46 (0.02) 6.60 (0.05)
RF 92.31 (1.36) 1.46 (0.02) 6.61 (0.05)

h=6 none 80.97 (2.01) 2.74 (0.06) 9.19 (0.11)
BC 83.36 (1.91) 2.67 (0.06) 9.55 (0.12)
RF 84.04 (1.88) 2.62 (0.06) 9.59 (0.12)

h=12 none 69.91 (2.34) 4.12 (0.11) 10.75 (0.17)
BC 74.61 (2.22) 3.99 (0.11) 11.84 (0.20)
RF 76.55 (2.17) 3.82 (0.09) 11.90 (0.19)

Table 13. IPI forecasting results for 13 European countries. The average of the series is obtained for
Interval Coverage Cm (in %), Mean Absolute Error MAE, and Interval’s Length Lm. Standard Errors
are provided between parenthesis. Rolling windows of size T = 200.

Horizon Correction Cm (se) MAE (se) Lm (se)
h=1 none 94.73 (1.31) 1.46 (0.03) 7.33 (0.07)

BC 94.82 (1.30) 1.46 (0.03) 7.36 (0.07)
RF 94.67 (1.32) 1.46 (0.03) 7.34 (0.06)

h=6 none 87.29 (1.98) 2.84 (0.08) 10.78 (0.11)
BC 88.45 (1.88) 2.81 (0.07) 10.95 (0.11)
RF 88.48 (1.88) 2.78 (0.07) 10.96 (0.11)

h=12 none 78.50 (2.46) 4.33 (0.13) 13.11 (0.16)
BC 80.50 (2.38) 4.22 (0.12) 13.69 (0.17)
RF 81.43 (2.32) 4.14 (0.12) 13.71 (0.17)

coverage for the first forecasting horizons. The results of Denmark and Spain are closer to the average
results.

There may be some concerns regarding the way to best model this data that must be taken into
account when interpreting the results. For instance, the models may be incorrectly specified (perhaps
more sophisticated approaches should be used to model the factors), or there may be structural breaks
in the data (in particular, this could be true for the windows containing the 2008 stock market crash)
that are entirely ignored. However, these effects are out of the scope of this work and the empirical
illustration still serves the purpose of demonstrating how bias-correcting the models for the common
factors improves forecasting outcomes.

6. Concluding Remarks

Following Clements and Kim (2007) we have studied the behavior, in small samples, of three
estimators for the AR parameters in a context of highly persistent models. Taking the applications of
the methodology one step further, we have employed it in AR models for common factors, when we
believe there are underlying unobserved factors driving the behavior of several time series. In all the
cases we use the same bootstrap procedure to obtain prediction intervals Alonso et al. (2008), so the
only divergence originates in the estimation of the aforementioned AR parameters.

To evaluate this methodology, we carried out several Monte Carlo simulations, with alternative
settings. These consisted of alternative sample sizes (in the time dimension) T = 50, 100, 200, different
models for the behavior of the common factors (AR(1) and AR(2) factors), and various assumptions
in regard to the information and tools available to the researcher, such as previous knowledge (or not)
of the number of common factors to obtain and their AR order, and employing AICc or BIC criteria
to select p, as well as the possibility of having non-Gaussian residuals.
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Our most important finding is that in all the settings considered, the two techniques BC and RF
succeed at obtaining improved coverage rates in comparison with the situation when no correction is
performed. Furthermore, RF tends to be the most advantageous.

Another outcome of the simulations is that, as expected, the smaller the sample (T), the greater
the improvement due to bias correction. Therefore, it is more effective to use correction techniques
when the sample size is small (which we have represented with T = 50) than for larger samples (in
particular, we have worked with T = 200).

Additionally, the edge of the techniques employed over none augments for longer forecasting
horizons, another result in line with Clements and Kim (2007).

Lastly, though the empirical results turn out to be rather modest measured by coverage rates,
still reveal large differences in performance of the corrected methods vs. none. In agreement with the
simulations outcomes, the improvements are more noticeable as the forecasting horizon increases.

Possible extensions include exploring the bias when the common factors follow alternative
specifications. For instance, MA terms could be included to the AR models hereby studied. Also,
seasonality may be modelled if needed. Another option would be to include VAR specifications for
the common factors instead of AR.
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Appendix A. Details about the results for the common factors

Because we work with simulated data, we generate and know the values of the underlying
factors, contrary to the situation of working with empirical data. In this section we take advantage of
this setting to understand better the circumstances surrounding the estimation of the models for the
common factors F1 and F2. We provide detail for the case of two factors that follow AR(1) processes,
both r and p are assumed to be known.

In our simulation, it is straight forward to check the bias for factors that are AR(1). This is done
in Table A1. The bias of BC and RF is much smaller than the one for none. Notice however that the
estimation rendered by none gets closer to the true value of the coefficients φF1, φF2 as the sample gets
larger. Thus, the emphasis in that the correction techniques employed in this work are particularly
beneficial for small samples.

Table A1. Bias for common factors following AR(1) processes with normal errors. Between
parenthesis, the variance of the AR estimated coefficients. Monte Carlo simulations of model with
coefficients φF1 = 0.975, φF2 = 0.90. 10,000 MC replications.

Factor Correction T=50 T=100 T=200
F1 none 0.086 (0.006) 0.045 (0.002) 0.023 (0.001)

BC 0.028 (0.005) 0.011 (0.002) 0.003 (0.001)
RF 0.018 (0.005) 0.005 (0.002) -0.001 (0.001)

F2 none 0.157 (0.013) 0.078 (0.005) 0.040 (0.002)
BC 0.092 (0.015) 0.042 (0.005) 0.021 (0.002)
RF 0.078 (0.017) 0.037 (0.005) 0.021 (0.002)
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Figure A1. Example of the estimation of F2 for a window with T = 100. Simulation of model with
coefficients φF1 = 0.975, φF2 = 0.90.

Tables A2, A3, and A4 present the results of the same simulation, this time for the factors (instead
of the selected series) for each indicated sample size. We can see that the interval coverage Cm is
oftentimes far from the theoretical 95%, especially for F2. Notwithstanding, the performance in terms
of coverage of the series (studied in Section 4.1) is much better. Take for instance the estimation of
F2 of a sample of size T = 100. In Figure A1 we present F2 and its estimate f2 for a random sample,
of the model in which factors follow AR(1) processes. Notice that for the last “observed” value (for
time = 100), F2 and the factor estimation f2 are slightly different; in this case f2 is smaller than the
actual value for F2. As a consequence, the forecasting interval for f2 does not match exactly what
would be the interval for the actual values of F2.9 In this case the forecasting interval of f2 (blue solid
lines) is smaller than the equivalent interval for the continuations (black dotted lines). This breach has
a negative effect in Cm for the factor, as we can see in Table A3, with coverage values around 86.50%
for h = 1, and even more when the samples are smaller like in Table A2.

Besides this point, we observe the same patterns for the factors than for the series. This is to be
expected given that, as previously explained, the time series are mainly the product of the common
factors times some weights.

9 The interval for the actual values of F2 is obtained using continuations given the known value of F2(T = 100) and the
known value φF2.
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Table A2. Results of Monte Carlo simulation, 10,000 replications. Two common factors following
AR(1) models with normal errors. Model with coefficients φF1 = 0.975, φF2 = 0.90. T = 50. Nominal
coverage 95%.

Factor Horizon Correction Cm (se) Lm (se) Lt (se) CQm

F1 h=1 none 90.38 (0.079) 3.73 (0.006) 3.88 (0.002) 0.09
BC 90.68 (0.081) 3.78 (0.006) 3.88 (0.002) 0.07
RF 90.94 (0.079) 3.78 (0.006) 3.88 (0.002) 0.07

h=5 none 85.33 (0.087) 6.87 (0.012) 8.27 (0.003) 0.27
BC 89.02 (0.078) 7.69 (0.013) 8.27 (0.003) 0.13
RF 90.76 (0.071) 7.87 (0.014) 8.27 (0.003) 0.09

h=10 none 79.38 (0.116) 8.16 (0.020) 11.01 (0.005) 0.42
BC 85.93 (0.111) 10.05 (0.025) 11.01 (0.005) 0.18
RF 89.21 (0.100) 10.51 (0.025) 11.01 (0.005) 0.11

F2 h=1 none 82.34 (0.198) 2.02 (0.003) 1.94 (0.001) 0.17
BC 82.42 (0.200) 2.03 (0.003) 1.94 (0.001) 0.18
RF 82.40 (0.201) 2.03 (0.004) 1.94 (0.001) 0.18

h=5 none 84.28 (0.097) 3.02 (0.006) 3.60 (0.002) 0.27
BC 87.50 (0.093) 3.35 (0.008) 3.60 (0.002) 0.15
RF 87.99 (0.094) 3.46 (0.008) 3.60 (0.002) 0.11

h=10 none 82.28 (0.096) 3.18 (0.008) 4.17 (0.002) 0.37
BC 86.58 (0.099) 3.77 (0.012) 4.17 (0.002) 0.18
RF 87.44 (0.101) 4.01 (0.014) 4.17 (0.002) 0.12

Table A3. Results of Monte Carlo simulation, 10,000 replications. Two common factors following
AR(1) models with normal errors. Model with coefficients φF1 = 0.975, φF2 = 0.90. T = 100. Nominal
coverage 95%.

Factor Horizon Correction Cm (se) Lm (se) Lt (se) CQm

F1 h=1 none 92.85 (0.040) 3.83 (0.004) 3.88 (0.002) 0.04
BC 92.92 (0.040) 3.85 (0.004) 3.88 (0.002) 0.03
RF 93.08 (0.040) 3.86 (0.004) 3.88 (0.002) 0.03

h=5 none 90.23 (0.054) 7.52 (0.009) 8.27 (0.003) 0.14
BC 92.18 (0.046) 8.06 (0.010) 8.27 (0.003) 0.06
RF 92.85 (0.043) 8.18 (0.010) 8.27 (0.003) 0.03

h=10 none 86.75 (0.080) 9.32 (0.016) 11.02 (0.005) 0.24
BC 90.60 (0.070) 10.68 (0.019) 11.02 (0.005) 0.08
RF 91.90 (0.064) 10.98 (0.019) 11.02 (0.005) 0.04

F2 h=1 none 86.50 (0.158) 2.02 (0.002) 1.94 (0.001) 0.13
BC 86.49 (0.160) 2.02 (0.002) 1.94 (0.001) 0.13
RF 86.38 (0.161) 2.03 (0.002) 1.94 (0.001) 0.13

h=5 none 89.68 (0.062) 3.32 (0.005) 3.60 (0.001) 0.13
BC 91.39 (0.058) 3.53 (0.005) 3.60 (0.001) 0.06
RF 91.40 (0.059) 3.57 (0.006) 3.60 (0.001) 0.05

h=10 none 88.38 (0.066) 3.61 (0.006) 4.17 (0.002) 0.20
BC 90.96 (0.063) 4.01 (0.008) 4.17 (0.002) 0.08
RF 91.11 (0.065) 4.10 (0.009) 4.17 (0.002) 0.06
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Table A4. Results of Monte Carlo simulation, 10,000 replications. Two common factors following
AR(1) models with normal errors. Model with coefficients φF1 = 0.975, φF2 = 0.90. T = 200. Nominal
coverage 95%.

Factor Horizon Correction Cm (se) Lm (se) Lt (se) CQm

F1 h=1 none 93.95 (0.024) 3.89 (0.003) 3.88 (0.002) 0.01
BC 93.96 (0.024) 3.89 (0.003) 3.88 (0.002) 0.01
RF 93.97 (0.025) 3.90 (0.003) 3.88 (0.002) 0.01

h=5 none 92.76 (0.032) 7.92 (0.007) 8.27 (0.003) 0.07
BC 93.73 (0.028) 8.25 (0.007) 8.27 (0.003) 0.02
RF 93.88 (0.027) 8.32 (0.007) 8.27 (0.003) 0.02

h=10 none 91.06 (0.048) 10.13 (0.012) 11.01 (0.005) 0.12
BC 93.04 (0.041) 11.00 (0.013) 11.01 (0.005) 0.02
RF 93.40 (0.040) 11.21 (0.014) 11.01 (0.005) 0.04

F2 h=1 none 89.96 (0.111) 2.01 (0.002) 1.94 (0.001) 0.09
BC 89.94 (0.112) 2.02 (0.002) 1.94 (0.001) 0.09
RF 89.97 (0.112) 2.02 (0.002) 1.94 (0.001) 0.09

h=5 none 92.59 (0.038) 3.50 (0.003) 3.59 (0.002) 0.05
BC 93.41 (0.035) 3.61 (0.004) 3.59 (0.002) 0.02
RF 93.41 (0.036) 3.62 (0.004) 3.59 (0.002) 0.02

h=10 none 91.81 (0.042) 3.91 (0.005) 4.17 (0.002) 0.10
BC 93.19 (0.039) 4.13 (0.006) 4.17 (0.002) 0.03
RF 93.18 (0.040) 4.14 (0.006) 4.17 (0.002) 0.03



31 of 42

Appendix B. Results for Non-Gaussian Errors

In this section we re-run the simulations for AR(1) common factors introducing non normal
errors. In particular, the innovations ηi,t (in (3)) follow a centred χ2(5) distribution (like Clements
and Kim, 2007). The main difference of this distribution with the normal is that it is not symmetrical.
Table B1 is the analogous to Table A1. Notice that the bias does not seem to worsen with the new
distribution of ηi,t. BC and RF continue to improve upon none, in a similar measure to the case of
normally distributed errors. Still, as expected, the estimation without any bias correction gets closer
to the true AR coefficients (φF1, φF2) as the sample (in the time dimension, T) gets larger.

Table B1. Bias for common factors following AR(1) processes with centred χ2(5) errors. Between
parenthesis, the variance of the AR estimated coefficients. Monte Carlo simulations of model with
coefficients φF1 = 0.975, φF2 = 0.90. 10,000 MC replications.

factor method T=50 T=100 T=200
F1 none 0.083 (0.004) 0.042 (0.001) 0.022 (0.001)

BC 0.015 (0.003) 0.004 (0.001) 0.001 (0.001)
RF 0.002 (0.003) -0.003 (0.001) -0.004 (0.001)

F2 none 0.177 (0.013) 0.078 (0.004) 0.035 (0.001)
BC 0.111 (0.015) 0.042 (0.004) 0.016 (0.002)
RF 0.096 (0.017) 0.036 (0.005) 0.015 (0.002)

The results in terms of coverage, interval length, and CQm, are similar to those for the process
with normal errors, revealing that the bias-corrections for the underlying non observed factors
improve forecasting results even when they are not normally distributed. For the five selected series,
results are presented in Tables B2-B4.
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Table B2. Results of Monte Carlo simulation, 10,000 replications. Five representative time series
created using two common factors, both following AR(1) models with centred χ2(5) errors. Model
with coefficients φF1 = 0.975, φF2 = 0.90. T = 50. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 91.89 (0.044) 4.60 (0.008) 4.79 (0.003) 0.07
BC 92.26 (0.042) 4.64 (0.008) 4.79 (0.003) 0.06
RF 92.34 (0.041) 4.66 (0.008) 4.79 (0.003) 0.06

h=5 none 85.02 (0.088) 7.36 (0.015) 9.05 (0.004) 0.29
BC 88.64 (0.081) 8.31 (0.018) 9.05 (0.004) 0.15
RF 89.44 (0.079) 8.58 (0.019) 9.05 (0.004) 0.11

h=10 none 81.15 (0.106) 8.23 (0.021) 10.99 (0.005) 0.40
BC 87.09 (0.103) 10.24 (0.030) 10.99 (0.005) 0.15
RF 88.61 (0.100) 10.86 (0.032) 10.99 (0.005) 0.08

Y2 h=1 none 92.26 (0.056) 2.29 (0.004) 2.35 (0.001) 0.05
BC 93.05 (0.048) 2.31 (0.004) 2.35 (0.001) 0.04
RF 93.23 (0.047) 2.32 (0.004) 2.35 (0.001) 0.03

h=5 none 82.44 (0.105) 3.93 (0.008) 5.02 (0.002) 0.35
BC 87.93 (0.091) 4.45 (0.010) 5.02 (0.002) 0.19
RF 89.08 (0.089) 4.57 (0.010) 5.02 (0.002) 0.15

h=10 none 75.73 (0.129) 4.53 (0.012) 6.70 (0.003) 0.53
BC 84.74 (0.122) 5.67 (0.016) 6.70 (0.003) 0.26
RF 86.88 (0.119) 5.99 (0.017) 6.70 (0.003) 0.19

Y5 h=1 none 91.75 (0.042) 5.98 (0.010) 6.25 (0.003) 0.08
BC 92.23 (0.039) 6.05 (0.010) 6.25 (0.003) 0.06
RF 92.35 (0.038) 6.07 (0.010) 6.25 (0.003) 0.06

h=5 none 83.94 (0.093) 9.77 (0.020) 12.28 (0.005) 0.32
BC 88.36 (0.082) 11.04 (0.023) 12.28 (0.005) 0.17
RF 89.25 (0.081) 11.37 (0.024) 12.28 (0.005) 0.13

h=10 none 78.45 (0.116) 11.07 (0.029) 15.65 (0.007) 0.47
BC 85.89 (0.112) 13.82 (0.039) 15.65 (0.007) 0.21
RF 87.70 (0.109) 14.62 (0.042) 15.65 (0.007) 0.14

Y10 h=1 none 92.79 (0.051) 6.21 (0.011) 6.29 (0.004) 0.04
BC 93.04 (0.049) 6.26 (0.011) 6.29 (0.004) 0.02
RF 93.09 (0.048) 6.29 (0.011) 6.29 (0.004) 0.02

h=5 none 85.78 (0.089) 9.92 (0.021) 11.92 (0.005) 0.26
BC 88.89 (0.083) 11.20 (0.025) 11.92 (0.005) 0.12
RF 89.62 (0.080) 11.57 (0.027) 11.92 (0.005) 0.09

h=10 none 83.10 (0.102) 11.01 (0.028) 13.96 (0.006) 0.34
BC 88.00 (0.101) 13.67 (0.041) 13.96 (0.006) 0.09
RF 89.35 (0.095) 14.53 (0.045) 13.96 (0.006) 0.10

Y25 h=1 none 92.52 (0.053) 8.77 (0.015) 8.99 (0.005) 0.05
BC 92.76 (0.051) 8.84 (0.015) 8.99 (0.005) 0.04
RF 92.80 (0.050) 8.86 (0.015) 8.99 (0.005) 0.04

h=5 none 85.56 (0.089) 14.22 (0.029) 17.13 (0.008) 0.27
BC 88.77 (0.084) 16.06 (0.036) 17.13 (0.008) 0.13
RF 89.52 (0.081) 16.58 (0.038) 17.13 (0.008) 0.09

h=10 none 82.68 (0.105) 15.85 (0.040) 20.19 (0.009) 0.34
BC 87.80 (0.103) 19.68 (0.058) 20.19 (0.009) 0.10
RF 89.22 (0.097) 20.93 (0.064) 20.19 (0.009) 0.10
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Table B3. Results of Monte Carlo simulation, 10,000 replications. Five representative time series
created using two common factors, both following AR(1) models with centred χ2(5) errors. Model
with coefficients φF1 = 0.975, φF2 = 0.90. T = 100. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 93.27 (0.029) 4.68 (0.006) 4.79 (0.003) 0.04
BC 93.36 (0.028) 4.70 (0.006) 4.79 (0.003) 0.04
RF 93.41 (0.028) 4.71 (0.006) 4.79 (0.003) 0.03

h=5 none 89.87 (0.055) 8.11 (0.011) 9.04 (0.004) 0.16
BC 91.67 (0.050) 8.69 (0.013) 9.04 (0.004) 0.07
RF 91.87 (0.051) 8.83 (0.013) 9.04 (0.004) 0.06

h=10 none 87.47 (0.073) 9.36 (0.017) 10.98 (0.005) 0.23
BC 90.73 (0.067) 10.65 (0.021) 10.98 (0.005) 0.07
RF 91.22 (0.067) 10.99 (0.023) 10.98 (0.005) 0.04

Y2 h=1 none 93.88 (0.036) 2.33 (0.003) 2.34 (0.001) 0.02
BC 94.17 (0.034) 2.34 (0.003) 2.34 (0.001) 0.01
RF 94.29 (0.033) 2.35 (0.003) 2.34 (0.001) 0.01

h=5 none 89.13 (0.065) 4.46 (0.006) 5.01 (0.002) 0.17
BC 91.80 (0.054) 4.79 (0.007) 5.01 (0.002) 0.08
RF 92.37 (0.052) 4.88 (0.007) 5.01 (0.002) 0.05

h=10 none 85.04 (0.089) 5.44 (0.010) 6.69 (0.003) 0.29
BC 90.05 (0.077) 6.28 (0.012) 6.69 (0.003) 0.11
RF 91.10 (0.073) 6.49 (0.013) 6.69 (0.003) 0.07

Y5 h=1 none 93.24 (0.027) 6.11 (0.007) 6.25 (0.003) 0.04
BC 93.38 (0.026) 6.14 (0.007) 6.25 (0.003) 0.03
RF 93.43 (0.026) 6.15 (0.007) 6.25 (0.003) 0.03

h=5 none 89.56 (0.057) 10.93 (0.015) 12.27 (0.006) 0.17
BC 91.76 (0.049) 11.74 (0.017) 12.27 (0.006) 0.08
RF 92.12 (0.048) 11.94 (0.017) 12.27 (0.006) 0.06

h=10 none 86.32 (0.080) 12.99 (0.024) 15.63 (0.007) 0.26
BC 90.43 (0.070) 14.88 (0.029) 15.63 (0.007) 0.10
RF 91.19 (0.068) 15.37 (0.031) 15.63 (0.007) 0.06

Y10 h=1 none 94.15 (0.033) 6.30 (0.008) 6.29 (0.004) 0.01
BC 94.18 (0.033) 6.32 (0.008) 6.29 (0.004) 0.01
RF 94.15 (0.034) 6.33 (0.008) 6.29 (0.004) 0.02

h=5 none 90.17 (0.057) 10.81 (0.016) 11.91 (0.005) 0.14
BC 91.74 (0.054) 11.57 (0.017) 11.91 (0.005) 0.06
RF 91.81 (0.055) 11.75 (0.018) 11.91 (0.005) 0.05

h=10 none 88.42 (0.070) 12.24 (0.022) 13.95 (0.006) 0.19
BC 91.01 (0.068) 13.85 (0.028) 13.95 (0.006) 0.05
RF 91.29 (0.068) 14.26 (0.031) 13.95 (0.006) 0.06

Y25 h=1 none 93.90 (0.036) 8.89 (0.010) 8.99 (0.005) 0.02
BC 93.92 (0.036) 8.92 (0.011) 8.99 (0.005) 0.02
RF 93.87 (0.037) 8.93 (0.010) 8.99 (0.005) 0.02

h=5 none 89.97 (0.058) 15.48 (0.022) 17.11 (0.008) 0.15
BC 91.67 (0.054) 16.60 (0.025) 17.11 (0.008) 0.07
RF 91.76 (0.054) 16.85 (0.026) 17.11 (0.008) 0.05

h=10 none 88.19 (0.071) 17.62 (0.032) 20.18 (0.009) 0.20
BC 90.97 (0.068) 19.98 (0.041) 20.18 (0.009) 0.05
RF 91.28 (0.068) 20.59 (0.044) 20.18 (0.009) 0.06
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Table B4. Results of Monte Carlo simulation, 10,000 replications. Five representative time series
created using two common factors, both following AR(1) models with centred χ2(5) errors. Model
with coefficients φF1 = 0.975, φF2 = 0.90. T = 200. Nominal coverage 95%.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 93.84 (0.022) 4.72 (0.004) 4.79 (0.003) 0.03
BC 93.88 (0.021) 4.72 (0.004) 4.79 (0.003) 0.03
RF 93.85 (0.022) 4.73 (0.004) 4.79 (0.003) 0.03

h=5 none 92.35 (0.034) 8.55 (0.008) 9.05 (0.004) 0.08
BC 93.21 (0.031) 8.88 (0.009) 9.05 (0.004) 0.04
RF 93.22 (0.032) 8.92 (0.009) 9.05 (0.004) 0.03

h=10 none 91.13 (0.046) 10.10 (0.013) 10.99 (0.005) 0.12
BC 92.73 (0.042) 10.84 (0.014) 10.99 (0.005) 0.04
RF 92.85 (0.042) 10.97 (0.015) 10.99 (0.005) 0.02

Y2 h=1 none 94.21 (0.029) 2.33 (0.002) 2.34 (0.001) 0.01
BC 94.33 (0.029) 2.34 (0.002) 2.34 (0.001) 0.01
RF 94.32 (0.029) 2.34 (0.002) 2.34 (0.001) 0.01

h=5 none 92.25 (0.039) 4.75 (0.005) 5.01 (0.002) 0.08
BC 93.45 (0.034) 4.96 (0.005) 5.01 (0.002) 0.03
RF 93.58 (0.033) 5.00 (0.005) 5.01 (0.002) 0.02

h=10 none 90.23 (0.056) 6.05 (0.008) 6.69 (0.003) 0.15
BC 92.57 (0.048) 6.59 (0.009) 6.69 (0.003) 0.04
RF 92.90 (0.046) 6.72 (0.009) 6.69 (0.003) 0.03

Y5 h=1 none 93.82 (0.020) 6.16 (0.005) 6.25 (0.003) 0.03
BC 93.87 (0.020) 6.17 (0.005) 6.25 (0.003) 0.03
RF 93.86 (0.020) 6.17 (0.005) 6.25 (0.003) 0.02

h=5 none 92.38 (0.033) 11.61 (0.011) 12.27 (0.006) 0.08
BC 93.37 (0.030) 12.09 (0.011) 12.27 (0.006) 0.03
RF 93.44 (0.030) 12.17 (0.012) 12.27 (0.006) 0.02

h=10 none 90.78 (0.048) 14.26 (0.018) 15.64 (0.007) 0.13
BC 92.74 (0.043) 15.44 (0.020) 15.64 (0.007) 0.04
RF 92.96 (0.042) 15.68 (0.021) 15.64 (0.007) 0.02

Y10 h=1 none 94.56 (0.026) 6.32 (0.006) 6.29 (0.004) 0.01
BC 94.58 (0.026) 6.32 (0.006) 6.29 (0.004) 0.01
RF 94.53 (0.027) 6.32 (0.006) 6.29 (0.004) 0.01

h=5 none 92.41 (0.038) 11.31 (0.012) 11.92 (0.005) 0.08
BC 93.19 (0.036) 11.72 (0.012) 11.92 (0.005) 0.04
RF 93.15 (0.038) 11.76 (0.013) 11.92 (0.005) 0.03

h=10 none 91.37 (0.047) 12.99 (0.017) 13.97 (0.006) 0.11
BC 92.70 (0.045) 13.82 (0.019) 13.97 (0.006) 0.03
RF 92.69 (0.047) 13.92 (0.020) 13.97 (0.006) 0.03

Y25 h=1 none 94.34 (0.028) 8.95 (0.008) 8.99 (0.005) 0.01
BC 94.36 (0.028) 8.95 (0.008) 8.99 (0.005) 0.01
RF 94.32 (0.029) 8.96 (0.008) 8.99 (0.005) 0.01

h=5 none 92.27 (0.038) 16.22 (0.016) 17.12 (0.008) 0.08
BC 93.09 (0.037) 16.79 (0.017) 17.12 (0.008) 0.04
RF 93.07 (0.038) 16.86 (0.018) 17.12 (0.008) 0.04

h=10 none 91.18 (0.048) 18.71 (0.024) 20.20 (0.009) 0.11
BC 92.59 (0.046) 19.94 (0.028) 20.20 (0.009) 0.04
RF 92.62 (0.048) 20.11 (0.028) 20.20 (0.009) 0.03
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Appendix C. Number of Factors and AR Orders Unknown for T=50 and T=200

This section complements the results presented in Section 4.2, considering the alternative sample
sizes T = 50 (Tables C1 and C2) and T = 200 (Tables C3 and C4). It continues to be the case that the
indicators Cm, Lm, and CQ are equal or better for BC and RF than for none. Consistently with the
results obtained in previous sections, the results are enhanced as the forecasting horizon h increases.

Additionally, for all the sample sizes (T), the results of employing BIC in the selection of p
outperform those of employing AICc. The performance of these criteria is recorded in Tables C5
and C6.

Last, it must be acknowledged that there is a sharp deterioration of results when the time frame
reduces to T = 50. In this regard, it should be reminded that the common factors are estimates
themselves and their accuracy improves with the sample size.
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Table C1. Results of Monte Carlo simulation, 10,000 replications. Five representative time series
created with both common factors following AR(2) processes with normal errors. Model with
coefficients φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 50. Nominal coverage 95%.

IC3 used in the estimation of R, BIC used in the selection of p̂.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 88.37 (0.071) 0.96 (0.001) 1.05 (0.000) 0.15
BC 89.00 (0.067) 0.97 (0.002) 1.05 (0.000) 0.14
RF 89.39 (0.065) 0.98 (0.002) 1.05 (0.000) 0.13

h=5 none 80.58 (0.132) 2.67 (0.006) 3.29 (0.001) 0.34
BC 84.91 (0.119) 2.97 (0.007) 3.29 (0.001) 0.20
RF 86.27 (0.106) 2.95 (0.007) 3.29 (0.001) 0.19

h=10 none 73.98 (0.158) 3.31 (0.010) 4.61 (0.002) 0.50
BC 81.20 (0.155) 4.08 (0.013) 4.61 (0.002) 0.26
RF 84.26 (0.128) 4.11 (0.013) 4.61 (0.002) 0.22

Y2 h=1 none 84.65 (0.078) 0.69 (0.001) 0.84 (0.000) 0.29
BC 85.30 (0.075) 0.69 (0.001) 0.84 (0.000) 0.28
RF 85.75 (0.071) 0.70 (0.001) 0.84 (0.000) 0.27

h=5 none 79.37 (0.139) 2.07 (0.005) 2.65 (0.001) 0.38
BC 83.66 (0.131) 2.29 (0.006) 2.65 (0.001) 0.25
RF 85.60 (0.113) 2.29 (0.006) 2.65 (0.001) 0.24

h=10 none 71.74 (0.170) 2.68 (0.009) 3.89 (0.002) 0.56
BC 79.31 (0.172) 3.31 (0.012) 3.89 (0.002) 0.31
RF 83.17 (0.144) 3.33 (0.011) 3.89 (0.002) 0.27

Y5 h=1 none 88.57 (0.068) 1.50 (0.002) 1.65 (0.001) 0.16
BC 89.17 (0.065) 1.52 (0.002) 1.65 (0.001) 0.14
RF 89.61 (0.062) 1.52 (0.002) 1.65 (0.001) 0.13

h=5 none 80.03 (0.134) 4.42 (0.011) 5.55 (0.002) 0.36
BC 84.34 (0.124) 4.90 (0.012) 5.55 (0.002) 0.23
RF 86.08 (0.108) 4.89 (0.012) 5.55 (0.002) 0.21

h=10 none 72.55 (0.165) 5.64 (0.018) 8.08 (0.003) 0.54
BC 80.08 (0.164) 6.97 (0.024) 8.08 (0.003) 0.29
RF 83.70 (0.136) 7.02 (0.023) 8.08 (0.003) 0.25

Y10 h=1 none 90.11 (0.074) 1.13 (0.002) 1.14 (0.000) 0.06
BC 90.67 (0.070) 1.14 (0.002) 1.14 (0.000) 0.05
RF 90.95 (0.067) 1.14 (0.002) 1.14 (0.000) 0.05

h=5 none 81.74 (0.136) 2.85 (0.007) 3.35 (0.001) 0.29
BC 85.80 (0.123) 3.17 (0.008) 3.35 (0.001) 0.15
RF 86.55 (0.112) 3.15 (0.008) 3.35 (0.001) 0.15

h=10 none 77.00 (0.151) 3.33 (0.010) 4.37 (0.002) 0.43
BC 82.93 (0.149) 4.10 (0.014) 4.37 (0.002) 0.19
RF 84.97 (0.125) 4.13 (0.014) 4.37 (0.002) 0.16

Y25 h=1 none 90.88 (0.070) 1.66 (0.003) 1.64 (0.001) 0.06
BC 91.42 (0.066) 1.68 (0.003) 1.64 (0.001) 0.06
RF 91.66 (0.064) 1.68 (0.003) 1.64 (0.001) 0.06

h=5 none 81.76 (0.134) 4.28 (0.011) 5.06 (0.002) 0.29
BC 85.85 (0.121) 4.77 (0.012) 5.06 (0.002) 0.15
RF 86.75 (0.109) 4.74 (0.012) 5.06 (0.002) 0.15

h=10 none 76.47 (0.154) 5.08 (0.015) 6.72 (0.003) 0.44
BC 82.62 (0.151) 6.26 (0.021) 6.72 (0.003) 0.20
RF 84.93 (0.126) 6.31 (0.021) 6.72 (0.003) 0.17
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Table C2. Results of Monte Carlo simulation, 10,000 replications. Five representative time series
created with both common factors following AR(2) processes with normal errors. Model with
coefficients φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 50. Nominal coverage 95%.

IC3 used in the estimation of R, AICc used in the selection of p̂.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 87.43 (0.078) 0.95 (0.001) 1.05 (0.000) 0.18
BC 88.07 (0.073) 0.96 (0.002) 1.05 (0.000) 0.16
RF 88.47 (0.070) 0.96 (0.002) 1.05 (0.000) 0.16

h=5 none 79.30 (0.140) 2.64 (0.006) 3.29 (0.001) 0.36
BC 83.75 (0.128) 2.93 (0.007) 3.29 (0.001) 0.23
RF 85.26 (0.111) 2.91 (0.007) 3.29 (0.001) 0.22

h=10 none 72.43 (0.166) 3.29 (0.010) 4.61 (0.002) 0.52
BC 79.80 (0.164) 4.06 (0.014) 4.61 (0.002) 0.28
RF 83.05 (0.135) 4.05 (0.013) 4.61 (0.002) 0.25

Y2 h=1 none 83.66 (0.082) 0.68 (0.001) 0.84 (0.000) 0.31
BC 84.39 (0.081) 0.69 (0.001) 0.84 (0.000) 0.30
RF 84.89 (0.076) 0.69 (0.001) 0.84 (0.000) 0.29

h=5 none 78.06 (0.141) 2.03 (0.005) 2.65 (0.001) 0.41
BC 82.65 (0.133) 2.26 (0.006) 2.65 (0.001) 0.28
RF 84.60 (0.116) 2.25 (0.005) 2.65 (0.001) 0.26

h=10 none 70.13 (0.174) 2.64 (0.009) 3.88 (0.002) 0.58
BC 78.04 (0.177) 3.27 (0.012) 3.88 (0.002) 0.34
RF 81.97 (0.148) 3.26 (0.011) 3.88 (0.002) 0.30

Y5 h=1 none 87.64 (0.075) 1.48 (0.002) 1.65 (0.001) 0.18
BC 88.29 (0.072) 1.50 (0.002) 1.65 (0.001) 0.16
RF 88.76 (0.067) 1.50 (0.002) 1.65 (0.001) 0.15

h=5 none 78.73 (0.140) 4.36 (0.011) 5.55 (0.002) 0.39
BC 83.23 (0.130) 4.84 (0.012) 5.55 (0.002) 0.25
RF 85.09 (0.113) 4.82 (0.012) 5.55 (0.002) 0.24

h=10 none 70.98 (0.171) 5.60 (0.018) 8.07 (0.003) 0.56
BC 78.76 (0.171) 6.92 (0.024) 8.07 (0.003) 0.31
RF 82.49 (0.142) 6.90 (0.023) 8.07 (0.003) 0.28

Y10 h=1 none 89.10 (0.081) 1.11 (0.002) 1.14 (0.000) 0.09
BC 89.64 (0.078) 1.12 (0.002) 1.14 (0.000) 0.07
RF 89.98 (0.074) 1.12 (0.002) 1.14 (0.000) 0.07

h=5 none 80.35 (0.145) 2.81 (0.007) 3.35 (0.001) 0.32
BC 84.45 (0.135) 3.13 (0.008) 3.35 (0.001) 0.18
RF 85.37 (0.120) 3.09 (0.008) 3.35 (0.001) 0.18

h=10 none 75.51 (0.160) 3.31 (0.010) 4.37 (0.002) 0.45
BC 81.48 (0.160) 4.06 (0.014) 4.37 (0.002) 0.21
RF 83.64 (0.133) 4.04 (0.014) 4.37 (0.002) 0.19

Y25 h=1 none 89.76 (0.077) 1.62 (0.003) 1.64 (0.001) 0.06
BC 90.36 (0.074) 1.64 (0.003) 1.64 (0.001) 0.05
RF 90.62 (0.070) 1.64 (0.003) 1.64 (0.001) 0.05

h=5 none 80.14 (0.143) 4.20 (0.010) 5.05 (0.002) 0.32
BC 84.41 (0.131) 4.68 (0.012) 5.05 (0.002) 0.19
RF 85.41 (0.118) 4.63 (0.012) 5.05 (0.002) 0.19

h=10 none 74.61 (0.160) 5.01 (0.015) 6.72 (0.003) 0.47
BC 81.12 (0.159) 6.16 (0.021) 6.72 (0.003) 0.23
RF 83.49 (0.132) 6.13 (0.020) 6.72 (0.003) 0.21
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Table C3. Results of Monte Carlo simulation, 10,000 replications. Five representative time series
created with both common factors following AR(2) processes with normal errors. Model with
coefficients φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 200. Nominal coverage 95%.

IC3 used in the estimation of R, BIC used in the selection of p̂.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 92.44 (0.030) 1.01 (0.001) 1.05 (0.000) 0.07
BC 92.44 (0.030) 1.01 (0.001) 1.05 (0.000) 0.07
RF 92.47 (0.030) 1.01 (0.001) 1.05 (0.000) 0.07

h=5 none 92.25 (0.040) 3.15 (0.004) 3.29 (0.001) 0.07
BC 93.02 (0.036) 3.24 (0.004) 3.29 (0.001) 0.04
RF 92.89 (0.036) 3.23 (0.004) 3.29 (0.001) 0.04

h=10 none 90.51 (0.055) 4.25 (0.006) 4.61 (0.002) 0.13
BC 92.32 (0.048) 4.55 (0.007) 4.61 (0.002) 0.04
RF 92.29 (0.047) 4.56 (0.007) 4.61 (0.002) 0.04

Y2 h=1 none 90.45 (0.031) 0.75 (0.001) 0.84 (0.000) 0.16
BC 90.50 (0.030) 0.75 (0.001) 0.84 (0.000) 0.16
RF 90.52 (0.030) 0.75 (0.001) 0.84 (0.000) 0.16

h=5 none 92.05 (0.039) 2.51 (0.003) 2.65 (0.001) 0.08
BC 92.79 (0.036) 2.58 (0.003) 2.65 (0.001) 0.05
RF 92.74 (0.035) 2.58 (0.003) 2.65 (0.001) 0.05

h=10 none 90.24 (0.057) 3.55 (0.005) 3.89 (0.002) 0.14
BC 92.08 (0.051) 3.82 (0.006) 3.89 (0.002) 0.05
RF 92.20 (0.048) 3.83 (0.006) 3.89 (0.002) 0.04

Y5 h=1 none 93.32 (0.027) 1.62 (0.001) 1.65 (0.001) 0.04
BC 93.34 (0.026) 1.62 (0.001) 1.65 (0.001) 0.03
RF 93.37 (0.026) 1.62 (0.001) 1.65 (0.001) 0.03

h=5 none 92.31 (0.039) 5.31 (0.006) 5.55 (0.002) 0.07
BC 93.05 (0.036) 5.48 (0.006) 5.55 (0.002) 0.03
RF 92.97 (0.035) 5.46 (0.006) 5.55 (0.002) 0.04

h=10 none 90.38 (0.057) 7.42 (0.011) 8.08 (0.003) 0.13
BC 92.24 (0.050) 7.97 (0.012) 8.08 (0.003) 0.04
RF 92.32 (0.047) 8.00 (0.012) 8.08 (0.003) 0.04

Y10 h=1 none 93.15 (0.030) 1.13 (0.001) 1.13 (0.000) 0.02
BC 93.18 (0.030) 1.13 (0.001) 1.13 (0.000) 0.02
RF 93.15 (0.030) 1.13 (0.001) 1.13 (0.000) 0.02

h=5 none 92.50 (0.038) 3.24 (0.004) 3.35 (0.001) 0.06
BC 93.24 (0.035) 3.34 (0.004) 3.35 (0.001) 0.02
RF 93.05 (0.036) 3.32 (0.004) 3.35 (0.001) 0.03

h=10 none 91.00 (0.051) 4.07 (0.006) 4.37 (0.002) 0.11
BC 92.54 (0.047) 4.34 (0.006) 4.37 (0.002) 0.03
RF 92.37 (0.048) 4.33 (0.006) 4.37 (0.002) 0.04

Y25 h=1 none 93.84 (0.029) 1.67 (0.001) 1.64 (0.001) 0.03
BC 93.89 (0.028) 1.67 (0.001) 1.64 (0.001) 0.03
RF 93.87 (0.028) 1.67 (0.001) 1.64 (0.001) 0.03

h=5 none 92.52 (0.038) 4.89 (0.006) 5.05 (0.002) 0.06
BC 93.21 (0.035) 5.03 (0.006) 5.05 (0.002) 0.02
RF 93.08 (0.036) 5.02 (0.006) 5.05 (0.002) 0.03

h=10 none 90.92 (0.052) 6.24 (0.009) 6.72 (0.003) 0.11
BC 92.51 (0.047) 6.67 (0.010) 6.72 (0.003) 0.03
RF 92.40 (0.047) 6.67 (0.010) 6.72 (0.003) 0.03
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Table C4. Results of Monte Carlo simulation, 10,000 replications. Five representative time series
created with both common factors following AR(2) processes with normal errors. Model with
coefficients φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 = 1.4, φF2
2 = −0.45. T = 200. Nominal coverage 95%.

IC3 used in the estimation of R, AICc used in the selection of p̂.

Series Horizon Correction Cm (se) Lm (se) Lt (se) CQm

Y1 h=1 none 92.03 (0.032) 1.00 (0.001) 1.05 (0.000) 0.08
BC 92.08 (0.031) 1.00 (0.001) 1.05 (0.000) 0.08
RF 92.06 (0.032) 1.00 (0.001) 1.05 (0.000) 0.08

h=5 none 91.98 (0.042) 3.14 (0.004) 3.29 (0.001) 0.08
BC 92.76 (0.038) 3.23 (0.004) 3.29 (0.001) 0.04
RF 92.66 (0.037) 3.22 (0.004) 3.29 (0.001) 0.05

h=10 none 90.36 (0.058) 4.26 (0.006) 4.61 (0.002) 0.12
BC 92.11 (0.051) 4.55 (0.007) 4.61 (0.002) 0.04
RF 92.05 (0.049) 4.54 (0.007) 4.61 (0.002) 0.05

Y2 h=1 none 89.99 (0.033) 0.74 (0.001) 0.84 (0.000) 0.17
BC 90.06 (0.032) 0.74 (0.001) 0.84 (0.000) 0.17
RF 90.13 (0.032) 0.74 (0.001) 0.84 (0.000) 0.17

h=5 none 91.73 (0.041) 2.49 (0.003) 2.65 (0.001) 0.09
BC 92.53 (0.038) 2.57 (0.003) 2.65 (0.001) 0.06
RF 92.46 (0.036) 2.56 (0.003) 2.65 (0.001) 0.06

h=10 none 90.04 (0.060) 3.55 (0.005) 3.88 (0.002) 0.14
BC 91.86 (0.054) 3.81 (0.006) 3.88 (0.002) 0.05
RF 91.92 (0.049) 3.80 (0.006) 3.88 (0.002) 0.05

Y5 h=1 none 92.90 (0.028) 1.60 (0.001) 1.65 (0.001) 0.05
BC 92.97 (0.028) 1.61 (0.001) 1.65 (0.001) 0.05
RF 92.98 (0.028) 1.61 (0.001) 1.65 (0.001) 0.05

h=5 none 92.01 (0.041) 5.29 (0.006) 5.55 (0.002) 0.08
BC 92.78 (0.037) 5.45 (0.006) 5.55 (0.002) 0.04
RF 92.69 (0.037) 5.43 (0.006) 5.55 (0.002) 0.05

h=10 none 90.21 (0.060) 7.44 (0.011) 8.07 (0.003) 0.13
BC 92.03 (0.053) 7.96 (0.012) 8.07 (0.003) 0.05
RF 92.05 (0.049) 7.94 (0.012) 8.07 (0.003) 0.05

Y10 h=1 none 92.85 (0.032) 1.12 (0.001) 1.14 (0.000) 0.03
BC 92.89 (0.032) 1.12 (0.001) 1.14 (0.000) 0.03
RF 92.86 (0.032) 1.12 (0.001) 1.14 (0.000) 0.03

h=5 none 92.32 (0.040) 3.25 (0.004) 3.35 (0.001) 0.06
BC 93.03 (0.038) 3.34 (0.004) 3.35 (0.001) 0.03
RF 92.86 (0.039) 3.32 (0.004) 3.35 (0.001) 0.03

h=10 none 90.86 (0.054) 4.09 (0.006) 4.37 (0.002) 0.11
BC 92.36 (0.050) 4.35 (0.007) 4.37 (0.002) 0.03
RF 92.17 (0.050) 4.33 (0.007) 4.37 (0.002) 0.04

Y25 h=1 none 93.54 (0.031) 1.66 (0.001) 1.64 (0.001) 0.03
BC 93.59 (0.030) 1.66 (0.001) 1.64 (0.001) 0.03
RF 93.59 (0.030) 1.67 (0.001) 1.64 (0.001) 0.03

h=5 none 92.34 (0.040) 4.89 (0.006) 5.05 (0.002) 0.06
BC 93.05 (0.037) 5.03 (0.006) 5.05 (0.002) 0.03
RF 92.87 (0.038) 5.00 (0.006) 5.05 (0.002) 0.03

h=10 none 90.77 (0.054) 6.27 (0.009) 6.72 (0.003) 0.11
BC 92.38 (0.048) 6.68 (0.010) 6.72 (0.003) 0.03
RF 92.15 (0.049) 6.65 (0.010) 6.72 (0.003) 0.04
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Table C5. Comparison of relative frequencies in the estimation of p̂ by BIC and AICc. The values
correspond to a Monte Carlo simulation with 10,000 replications. Two common factors, both following
AR(2) models with normal errors. Model with coefficients φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 =

1.4, φF2
2 = −0.45. T = 50. Nominal coverage 95%.

Factor p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ = 5 p̂ = 6
BIC
F1 4.84 64.87 11.91 7.32 5.64 5.42
F2 10.09 59.03 13.18 7.46 5.04 5.20
AICc
F1 1.24 37.05 15.65 13.51 13.58 18.97
F2 2.70 34.17 16.71 13.86 13.81 18.75

Table C6. Comparison of relative frequencies in the estimation of p̂ by BIC and AICc. The values
correspond to a Monte Carlo simulation with 10,000 replications. Two common factors, both following
AR(2) models with normal errors. Model with coefficients φF1

1 = 1.475, φF1
2 = −0.4875, φF2

1 =

1.4, φF2
2 = −0.45. T = 200. Nominal coverage 95%.

Factor p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4 p̂ = 5 p̂ = 6
BIC
F1 0.00 89.33 7.56 2.07 0.77 0.27
F2 0.03 85.96 10.44 2.39 0.77 0.41
AICc
F1 0.00 36.91 16.35 14.14 13.68 18.92
F2 0.00 32.78 18.89 14.00 13.98 20.35
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