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Abstract

Memory charts like EWMA-S2 or CUSUM-S2 can be designed to be optimal to detect a speci�c

shift in the process variance. However, this feature could be a serious inconvenience since, for

instance, if the charts are designed to detect small shift, then, they can be ine¢ cient to detect

moderate or large shifts. In the literature, several alternatives have been proposed to overcome

this limitation, like the use of control charts with variable parameters or adaptive control charts.

This paper proposes new adaptive EWMA control charts for the dispersion (AEWMA-S2) based

on a time-varying smoothing parameter that takes into account the potential misadjustment in the

process variance. The obtained control charts can be interpreted as a combination of EWMA control

charts designed to be e¢ cient for di¤erent shift values. Markov chain procedures are established to

analyze and design the proposed charts. Comparisons with other adaptive and traditional control

charts show the advantages of the proposals.
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1 Introduction

The use of control charts as a process monitoring tool has become increasingly popular in the �eld of

statistical process control (SPC). Shewhart control charts (Shewhart, 1931) can be used for monitoring

the mean or the variability of the process. In many practical applications, it is even more important

to control shifts in the process variability rather than the mean, since an increase of the variability

process causes an increased number of defective products while a decrease of process variability implies

an improvement of process capability (Acosta-Mejia et al., 1999). Besides, it is meaningless to claim

a shift of the process mean unless it is sure that the process variability is in control.

Shewhart control charts such as the range R or the unbiased sample variance S2 control charts can

be used for monitoring the variability of rational subgroups sampled of the process. However, as in

the case of monitoring the process mean, these procedures are not very sensitive to small shifts.

In order to increase the sensitivity to small shifts, the literature has proposed some alternative

procedures that use statistics with memory, usually called memory control charts or time-weighted

control charts. It is known that the most popular memory control charts are the CUSUM and the

EWMA charts, which have been recognized as potentially powerful tools in quality control. One of

the �rst CUSUM control charts for monitoring variability was introduced by Page (1963) and then

studied by Bagshaw and Johnson (1975), Hawkins (1981), Box and Ramírez (1991a,b,c), Chang and

Gan (1995), Castagliola et al. (2009) and Nazir et al. (2015), among others.

Furthermore, Wortham and Ring (1971), Sweet (1986) and Ng and Case (1989) investigated the

properties of EWMA control charts for monitoring the process variability but they were not able to

introduce formal design strategies for the problem. Box, Hunter and Hunter (1978), among others,

introduced the use of the logarithm of the sample variances since it is more approximately normally

distributed than the sample variance by itself. Crowder and Hamilton (1992) proposed an EWMA

control chart for monitoring the variability based on the logarithmic transformation of the sample

variance, log
�
S2
�
, due to its simplicity and e¢ ciency. Castagliola (2005) proposed a bilateral EWMA

control chart for monitoring the variability using a logarithmic transformation of three parameters (a

particular case of the Johnson, 1949 transformations) to improve normality.

As an extension of the Crowder and Hamilton (1992) proposal, Shu and Jiang (2008) presented

an EWMA control chart for monitoring the variability (NEWMA), which truncates the negative

normalized observations to zero in the statistical traditional EWMA. Maravelakis and Castagliola

(2009) propose a modi�ed EWMA control chart for monitoring the standard deviation when the

parameters are estimated. Castagliola et al. (2010) presented an EWMA control chart that improves

the 2005 version. This chart uses the Johnson transformation of four parameters to attain normality.
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Other interesting researches that study CUSUM and EWMA control charts for the process vari-

ability can be found in Tuprah and Ncube (1987), MacGregor and Harris (1993), Gan (1995), Lowry

et al. (1995), Acosta-Mejia (1998), Amin et al. (1999), Chao-Wen and Reynolds (1999), Acosta-Mejía

et al. (1999), Huwang et al. (2010), Abbasi (2010), Abbasi and Miller (2013) and Haq et al. (2014),

among others.

Analogously to the control of the process mean, adaptive CUSUM and EWMA control charts for

monitoring the variability process can be proposed based on time-varying versions of the parameters

that control the memory of the charts; that is k in CUSUM charts and � in EWMA charts. By

adapting the memory, we can make charts sensitive to both small and large shifts. The intuition

behind these adaptive charts is to use a measure of the potential presence of a shift. Accordingly,

the value of the parameter is increased when it is suspected that the process could be out of control

due to a large shift. Conversely, if the data show strong evidence of being in control or with a small

shift, the parameters tend to be smaller, easing the detection of potential small shifts. This kind of

adaptation scheme is the one we pursue in this paper.

Shu et al. (2010) proposed an adaptive CUSUM control chart for monitoring shifts in the process

variability (ACUSUM-S2). This chart is an extension of the ACUSUM control chart for monitoring

the process mean initially proposed by Sparks (2000). This ACUSUM-S2 chart dynamically adjusts

its reference value according to a current estimate of the process variance and does not require precise

information about the magnitude of shift.

Capizzi and Masarotto (2003) developed an AEWMA control chart for monitoring the process mean

based on weighting recent observations using an score function of the current error et = xt � yt�1,

where xt is the last observation of the process and yt�1 is the previous value of the monitoring statistic.

In particular, if et is small, the value of � tends to be small, like in conventional EWMA chart, since

the process seems to be in control. However, if et is large the value of � tends to be large, since the

risk of being out of control is higher.

Shu (2008), considering the statistic of Crowder and Hamilton (1992), proposed an adaptive

EWMA control chart for monitoring the process variability. This chart is based on the latest ob-

servations dynamically weighted according to an appropriate function of the current prediction error.

It is actually an extension of Capizzi and Masarotto (2003) for monitoring the process mean.

Additionally, some new AEWMA control charts for monitoring the process mean are proposed by

Ugaz et al. (2017). These charts use speci�c statistics that quantify the evidence of a shift from data,

that is, statistics based on the distance from observations xt to the process mean �0 or based on the

prediction error, et, or just based on the level of yt�1. Subsequently, the statistics are translated to
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time varying smoothing factor �t. Those AEWMA control charts are competitive with respect to the

proposal of Capizzi and Masarotto (2003).

In this paper, considering the proposals of Ugaz et al. (2017), some alternative AEWMA-S2

control charts are proposed. To that aim, several measures of the potential shift of the process

variance are suggested. For each measure of potential shift, alternative methods to translate such

measure into a time varying smoothing factor are discussed. Procedures to compute the ARL of the

proposed AEWMA-S2 based on Markov chain approximations are obtained, which allow us to attain

the optimal designs. A numerical comparison of these alternative approaches and some alternatives

in the literature is presented.

The rest of the article is organized as follows. In Section 2, the notion of the adaptive EWMA-S2

control chart is introduced. In Section 3, AEWMA-S2 control charts with time varying �t based on the

last observation are proposed. In Section 4, AEWMA-S2 control charts with time varying �t based on

the level of the control statistics are proposed. Section 5, presents the results of several comparisons

between alternative control charts and the proposed AEWMA-S2 control charts. Finally, in Section

6, some concluding remarks are given.

2 Adaptive EWMA-S2 control chart

Assume that observations Xt;i, t = 1; 2; � � � and i = 1; 2; � � � ; n are independent and identically distri-

buted following a normal distribution N
�
�; �2t

�
. Furthermore, we are mainly interested in detecting

increases in the process variance, i. e., �2t = �
2
0; t < t

� and �2t > �
2
0; t � t� and � t = �t=�0. Let S2t be

the variance of the t�th rational subgroup of size n de�ned by S2t = (1= (n� 1))
Pn
i=1

�
Xt;i �Xt

�2
;

where Xt;i is the i�th observation of the t�th rational subgroup and Xt is the t�th subgroup mean.

Crowder and Hamilton (1992) suggested the EWMA chart for monitoring increases in the process

variance with the statistic,

yt = max [0; �Mt + (1� �) yt�1] ; y0 = 0; (1)

where Mt = ln
�
S2t =�

2
0

�
, which is approximately normal distributed (Shu and Jiang, 2008). The mean

and variance of the transformed variable Mt are approximated by,

�
Mt
= ln

�
�2t
�
� 1

n� 1 �
1

3 (n� 1)2
+

2

15 (n� 1)4
, (2)

and

�2Mt
=

2

n� 1 +
2

(n� 1)2
+

4

3 (n� 1)3
� 16

15 (n� 1)5
; (3)

4



respectively. It is important to note that �2Mt
only depends on n. Because of thatMt can be monitored

as Xt in the EWMA chart for monitoring the process mean. This EWMA-S2 control chart signals

when,

yt > h; (4)

where h is a threshold that determines the in control average run length (ARL0).

To design the EWMA-S2 control chart for the variance process, the parameter values of � and h

for some rational subgroup of size n must be selected. � and h, which are de�ned in (1) and (4) can be

chosen in such a way that the chart is optimal for detecting a prespeci�ed shift in the variance process

for a given ARL0. The in�uence of the design parameters in the performance of the EWMA-S2 has

been studied by Box, Hunter and Hunter (1978), Crowder and Hamilton (1992), Castagliola (2005),

Shu and Jiang (2008), Castagliola et al. (2010), Huwang et al. (2010), Abbasi (2010), among others.

The ARL of this AEWMA-S2 is a function of the shift, � = �1=�0 (�0 is the standard deviation of

the in control process and �1 is the standard deviation of process when it is out of control), �, h and

n. It can be written as ARL=ARL(�; hj� ; n): Then, by solving the following optimization problem,

the optimal values of � and h that minimize the ARL(�; hj� ; n) can be obtained:

min
�;h

(ARL (�; hj� ; n))

subject to:

ARL (�; hj� = 1; n) = ARL0;

The ARL (�; hj� 6= 1; n) can be approximated by a discrete Markov chain procedure (see, for instance,

Brook and Evans, 1972 or Lucas and Saccucci, 1990).

Whereas an optimal EWMA-S2 chart would need a di¤erent value of � for each � , the same value

of � can be a reasonable option for some range of shifts. However, there is not a single value of � that

can provide optimal or nearly optimal EWMA charts for both small and large values of � . To illustrate

this �nding, we have calculated the optimal pair (�; h) denoted as (��; h�) for each shift � 2 [1; 3], for

ARL0 = 200 and n = 5, using the proposal of Crowder and Hamilton (1992) with the transformation

Mt. The corresponding minimum ARL is denoted as ARL�; that is ARL� =ARL(��; h�; �) . Figure 1

and Table 1 show the values of �� for each � as well as the range of values of �, denoted as the interval

[�1; �2], such that the corresponding ARL is not greater than a 10% of ARL; that is, for � 2 [�1; �2],

that is ARL(�; h; �) � 1:1�ARL(��; h�; �) for all � in [�1; �2]. For instance, if � = 1:3 then it is

possible to obtain an ARL 2 [10:52; 11:57] for � 2 [0:005; 0:5703]. On the other hand, if � = 0:15,

it possible to obtain acceptable values of ARL (with a di¤erence lower than 10% of ARL�) for small

shifts from � � 1:1 up to � � 1:5; if � = 0:7, it is possible to obtain acceptable values of ARL for

� � 1:4. We can also see that, when the shift is small, for instance, � 2 (1; 1:4], it can be noticed that

5



the di¤erences between the ARL� and 1:1 � ARL� are notable and therefore the variation of � has

large in�uence in the ARL. Conversely, for � � 1:5, the in�uence of � in ARL is small.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

2
*

1

Figure 1: Relationship between the optimal � and the range de�ned by �1 and �2 with the shift. The

values �1 and �2 lead to an ARL of value 1:1ARL�:

As a conclusion, if we want an EWMA-S2 with a good performance for all shifts, we need to use

a time varying �, that is � = �t. The above results suggest that �t must depend on the shift. But, it

is known that in real situations, the shift is unknown and we need to �nd measures of the evidence of

shift based on the data. Those measures will be convert to an appropriate value �t: If data suggest

that the process dispersion could have shifted, the value of �t would increase to allow yt to be closer

to the new variance. This situation would facilitate to trigger the alarm. In the other hand, if data

show low evidence of being shifting, a lower value would be �xed to the parameter �t. This situation

would facilitate the detection of a possible small shift.

In this regard, Capizzi and Masarotto (2003) propose an adaptive EWMA control chart (AEWMA)

based on the behavior of data for monitoring the process mean. Later, and following the work of

Crowder and Hamilton (1992) and Capizzi and Masarotto (2003), Shu (2008) presents an adaptive

6



� �� ARL� 1:1 �ARL� [�1; �2]

1.1 0.005 41.98 46.18 [0:005; 0:187]

1.2 0.042 18.09 19.90 [0:005; 0:356]

1.3 0.157 10.52 11.57 [0:005; 0:570]

1.4 0.321 7.08 7.78 [0:030; 0:717]

1.5 0.449 5.18 5.70 [0:098; 0:819]

1.6 0.529 4.04 4.45 [0:173; 0:905]

1.7 0.593 3.31 3.64 [0:239; 0:986]

1.8 0.648 2.80 3.08 [0:289; 1:000]

1.9 0.696 2.44 2.69 [0:326; 1:000]

2.0 0.739 2.17 2.39 [0:354; 1:000]

2.1 0.778 1.97 2.17 [0:374; 1:000]

2.2 0.814 1.81 1.99 [0:389; 1:000]

2.3 0.848 1.68 1.85 [0:400; 1:000]

2.4 0.879 1.58 1.74 [0:407; 1:000]

2.5 0.909 1.50 1.65 [0:410; 1:000]

2.6 0.937 1.43 1.57 [0:411; 1:000]

2.7 0.963 1.37 1.51 [0:409; 1:000]

2.8 0.988 1.32 1.46 [0:405; 1:000]

2.9 1.000 1.28 1.41 [0:399; 1:000]

3.0 1.000 1.25 1.38 [0:392; 1:000]

Table 1: Minimum ARL for each shift � and the corresponding � .

EWMA control chart for monitoring increases in the process variance (AEWMA-S2) which considers

the following statistic

yt = max [0; yt�1 + � (et)] ; y0 = 0; (5)

where, et = Mt � yt�1, Mt is de�ned in (1) and � (et) is a score function based on Huber function

(Huber, 1981),

� (e) =

8>>><>>>:
e+ (1� �)  if e < �

�e if jej � 

e� (1� �)  if e > 

; (6)

where,  is an additional parameter of the chart. Indeed, a signal of upward shift is issued when

yt > h, where h is a threshold that determines the ARL0. A similar procedure could be followed if we

are interested in monitoring decreases in the process variance.

In this article we will analyze alternative strategies to obtain AEWMA-S2 control charts using

time-varying smoothing parameters, based on Ugaz et al. (2017), for monitoring increases in the

process variance using the statistic,

yt = max [0; �tMt + (1� �t) yt�1] ; y0 = 0; (7)
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where, Mt is the transformed variable used by Crowder and Hamilton (1992). The alarm is triggered

as soon as yt > h, where h is a threshold that determines the ARL0: Three alternative measures of

a potential shift are analyzed. With these measures, we build four AEWMA-S2 charts. The �rst

measure of potential shift is based on the distance between the last observation Mt and the target

�
Mt
. The second measure is based on the distance between the last observation Mt and the previous

value of the control statistics yt�1, as in Shu (2008). Finally, the third measure of potential shift is

based only on the value of yt�1. For each case, alternative score functions to convert each measure

into a time-varying smoothing parameter are also used just like in Ugaz et al. (2017). In each case,

procedures to compute the ARL and to optimise the charts based on Markov chain approximations

are proposed.

3 AEWMA-S2 charts with �t based on the last Mt

In this section, we present several proposals for measuring the evidence of the shift in the process

variance based on the last transformed variable Mt. The �rst proposal, denoted as AEWMA1-S2,

is based on the standardized distance from Mt to the target �M0: The second proposal, denoted as

AEWMA2-S2, is based on the standardized distance from Mt to the last value of the monitoring

statistics, yt�1: And �nally, the third proposal is a combination of the previous proposals and it is

denoted by AEWMA3-S2. Then, the smoothing parameter �t is obtained by using a transformation

of those three distances.

3.1 The AEWMA1-S2 chart

This adaptive control chart uses the following statistic

T1t =

�
Mt � �M0

�M

�2
(8)

as a measure of the evidence of the shift. Notice that T1t is the standardized distance from the last

transformed variable Mt to the target �M0 and it tends to be larger in presence of a shift in the

process variance. The terms �M0 and �M are obtained by the expressions (2) and (3) when � = 1.

Given yt�1; the value of Mt is a random variable and it is approximately normal distributed (Shu and

Jiang, 2008). Therefore, if the process is in control, it holds that T1t follows approximately a central

chi-square distribution of one degree of freedom, �21. The cumulative distribution function is given by,

F1t = P
�
�21 � T1t

�
: (9)

Although F1t is a natural choice for �t since F1t 2 [0; 1] and it is an increasing function on T1t,

Sánchez (2006) has shown that the variability of F1t can be very large, provoking a large variance of

8



the monitoring statistics yt. Then, some e¢ cient transformation that translate F1t into a smoothing

parameter �t are required. In Ugaz et al. (2017), the following transformations have been explored:

� Linear bounded transformation

�
(1)
1t = �min + (�max � �min)F1t; (10)

where �min and �max are parameters that are optimized to attain the lowest ARL for a given

ARL0, and computed with a procedure described in subsection 3.4.

� Power transformation

�
(2)
1t = �min + (�max � �min)F a1t; (11)

where a is another parameter to be optimized together with �min and �max.

� Threshold transformation

�
(3)
1t = �min + (�max � �min) q1t;

q1t =

8><>:
0 if F a1t � p0;

F a1t � p0
1� p0

otherwise,
(12)

where the threshold p0 is a constant to be optimized together with a; �min; and �max.

It could be noticed that �t = �min when F a1t is smaller than prespeci�ed threshold, p0 (an per-

centile). Consequently, we will maintain a low smoothing factor unless the evidence of shift is large. If

F1t > p0; we maintain a similar transformation as in (11) in such a way that the whole transformation

is continuous. Moreover, the power transformation is a particular case of the threshold transformation

when p0 = 0, and the linear bounded transformation is a particular case of the power transformation

when a = 1.

3.2 The AEWMA2-S2 chart

This adaptive control chart uses the following statistic

T2t =

�
Mt � yt�1
�M

�2
(13)

as a measure of the evidence of the shift. Notice that T2t is di¤erence between the current Mt and

the value of the AEWMA statistic in the previous time, yt�1 and it tends to be larger in presence of

a shift in the process variance. This statistic holds that

T2t =

�
Mt � �M0

�M
+
�M0 � yt�1

�M

�2
=

�
Zt +

�M0 � yt�1
�M

�2
; (14)
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where Zt is approximately a standard normal random variable (see Shu and Jiang, 2008). Given

yt�1; T2t could be approximated by a non-central chi-square distribution of one degree of freedom,

�21(t); with noncentrality parameter t = (�M0 � yt�1) =�M . As mentioned in Ugaz et al. (2016), the

noncentrality parameter, t, can be neglected for practical purposes. Thus, for the sake of simplicity,

the transformation of T2t into a smoothing parameter will be done by,

�2t = �min + (�max � �min) q2t;

q2t =

8><>:
0 if Ga2t � p0;

Ga2t � p0
1� p0

otherwise,
(15)

G2t = P (�21 � T2t);

where the parameters �min; �max; p0; and a; are optimized to minimize the ARL when the process is

out of control, for a given ARL0 using the procedure shown in subsection 3.4.

3.3 The AEWMA3-S2 chart

This chart is a combination of the AEWMA1-S2 and AEWMA2-S2 charts in the sense that we consider

the statistic T1t or T2t; which is more pessimistic with respect to the evidence of misadjustment, that is

T3t = max (T1t; T2t). Consequently, the AEWMA3-S2 chart uses the following time-varying smoothing

parameter,

�3t = max(�
(3)
1t ; �2t); (16)

which corresponds to use the statistic T3t in the transformation (15).

4 AEWMA-S2 chart based on the value of the control statistics

In this AEWMA-S2 chart, denoted as AEWMA4-S2, �t is based on the value of yt�1: It uses the

following statistic

Dt =
���yt�1
H

��� = ���yt�1
h

��� ;
which is the ratio between yt�1 and the control limit H = h. The closer yt�1 is to the control limit,

the closer Dt to 1 is. Then, using (12) with F1t = Dt or (15) with G2t = Dt, the misadjustment can

be converted into a time-varying smoothing parameter �t. It should be noticed that statistic Dt does

not depend on Mt, which makes easier the ARL calculation.
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5 Computation of the ARL by using a Markov chain approach

This section presents a procedure to compute the ARL of the AEWMA1-S2, AEWMA2-S2, and

AEWMA3-S2 charts using a Markov chain approach. Following the idea of Brook and Evans (1972),

Lucas and Saccucci (1990), Capizzi and Masarotto (2003) or Shu (2008), we can approximate the

value of ARL by discretizing the in�nite-state transition probability matrix of the continuous-state

Markov chain de�ned by (7). For convenience, we rewrite the control statistics of the AEWMA-S2 as,

yt = max [0; yt�1 + (Mt � yt�1)�t] : (17)

The procedure consists in dividing the interval [0; h] in an odd number m of subintervals 
j ,

j = 1; 2; :::; m. These subintervals have width ! = (2h) = (2m� 1), except the �rst subinterval whose

width is !=2. Each subinterval 
j , that represents the j�th state, has as midpoint �j = (j � 1)!.

The control statistic yt is considered to be in the transient state or subinterval 
j , at time t, if

�j � !=2 < yt < �j + !=2. Furthermore, yt falls in an absorbing state when it exceeds a threshold h.

Let P (j; k) be the transition probability of yt of going from state j to state k. Then, for j = 1; 2; 3; :::;

m and k 6= 1;

P (j; k) = Pr (yt 2 
k j yt�1 2 
j) (18)

= Pr(vk � !=2 < yt � vk + !=2 j yt�1 = vj)

= Pr((k � 1)! � !=2 < vj + (Mt � vj)�t � (k � 1)! + !=2)

= Pr((k � 1)! � !=2� (j � 1)! < (Mt � vj)�t � (k � 1)! + !=2� (j � 1)!)

= Pr((k � j � 1=2)! < (Mt � vj)�t � (k � j + 1=2)!): (19)

Let denote a1 = (k � j � 1=2)! and a2 = (k � j + 1=2)!. Then,

P (j; k) = Pr [exp (a1) < exp [�t (Mt � vj)] � exp (a2)]

= Pr

�
exp (a1) <

exp (�tMt)

exp (�tvj)
� exp (a2)

�
: (20)

Note that when k = 1,

P (j; 1) = Pr

�
exp (�tMt)

exp (�tvj)
� exp (a2)

�
:

Replacing Mt = ln
�
S2t =�

2
0

�
in (20),

P (j; k) = Pr

"
exp (a1) <

exp
�
�t ln

�
S2t =�

2
0

��
exp (�tvj)

� exp (a2)
#

= Pr

"
exp (a1) <

�
S2t =�

2
0

��t
exp (�tvj)

� exp (a2)
#
: (21)

In the next subsections we develop procedures to calculate P (j; k) for the AEWMA1-S2 to AEWMA4-

S2 charts.
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5.1 Computation of ARL of AEWMA1-S2 to AEWMA3-S2 charts

In the AEWMA1-S2 to AEWMA3-S2 charts, the expression
�
S2t =�

2
0

��t = exp (�tvj) in (21) does not
have a trivial distribution since �t depends on

�
S2t =�

2
0

�
by (12), (15) or (16). Therefore, an approxima-

tion to the distribution is proposed. In this regard, it is known that S2t =�
2
0 � �

�
(n� 1) =2; 2�2=

�
(n� 1)�20

��
.

Let �S be the standard deviation of the random variable S2t =�
2
0, then, it is known that,

�S =
�
[(n� 1) =2]

�
2�2=

�
(n� 1)�20

��2�1=2
: (22)

Based on (22), a suitable probability interval for S2t =�
2
0 is de�ned, for example, (0; 7�S ], since

probability of falling above 7�S is close to zero. The mentioned interval is discretized inm� subintervals

	i, i = 1; 2; 3; :::;m�. Similarly to the previous discretization, the width of the subintervals is de�ned

by " = 7�S= (2m� � 1) and the midpoint of i�th subinterval 	i is denoted by ui. If S2t =�20 2 	i then

ui � "=2 < S2t =�
2
0 � ui + "=2: In each of these subintervals, we approximate S2t =�

2
0 to the value ui:

The approximate values for S2t =�
2
0 can be used to assign an approximate value to Mt and �t in each

subinterval as,

T1t �
�
lnui � �M0

�M

�2
� ci or T2t �

�
lnui � vj
�M

�2
� ci or T3t � max (T1t; T2t) � ci

ri = P
�
�21 < ci

�
qi =

8><>:
0 if rai � p0;

rai � p0
1� p0

otherwise,

�i = �min + (�max � �min) qi:

In consequence, if we want to approximate the values of P (j; k) in (18), we can condition on each

subinterval 	i and apply the total probability formula as,

P (j; k) = Pr

"
exp (a1) �

�
S2t =�

2
0

��t
exp (�tvj)

� exp (a2)
#

=

mX
i=1

Pr

"
exp (a1) �

�
S2t =�

2
0

��t
exp (�tvj)

� exp (a2)
����� S2t =�20 2 	i

#
Pr
�
S2t =�

2
0 2 	i

�
�

mX
i=1

Pr

"
exp (a1) �

(ui)
�i

exp (�ivj)
� exp (a2)

#
Pr
�
S2t =�

2
0 2 	i

�
: (23)

Notice that since ui is a constant in each subinterval, the �rst probability at the right hand side

of (23) is easy to compute, since it is just 1 or 0. The second one is also easy to compute, since we

have that S2t =�
2
0 � �

�
(n� 1) =2; 2�2=

�
(n� 1)�20

��
. Finally, let Rm�m be a submatrix that contains

the probabilities P (j; k) of going from the transient state j to the state k, pini is an initial probability

12



vector of the states, I is the m � m identity matrix, and 1 is a m � 1 vector of ones. Then, the

probability function of RL and hence the ARL in zero-state (ARLZS), are given by,

Pr (RL = rl) = p0ini

�
Rrl�1 �Rt

�
1;

and

ARLZS = p0ini (I�R)
�1 1; (24)

respectively.

Lucas and Saccucci (1990) or Shu (2008) suggest using the cyclic probability steady-state vector,

pss, for calculating the ARL in steady-state (ARLSS). The pss vector is obtained by solving pss =

P01pss, subject to 1
0pss = 1, where P1 is the ergodic transition probability matrix de�ned by,

P1 =

0@ R (I�R)1

e01 0

1A ;
where e01 = (1 0 0:::0). Hence, the ARL

SS is obtained by,

ARLSS = q0 (I�R)�1 1; (25)

where, q is a vector of lengthm obtained from pss by deleting the entry corresponding to the absorbing

state and normalizing so that the probabilities sum to 1.

5.2 Computation of ARL of AEWMA4-S2 charts

For the AEWMA4-S2 chart, �t does not depend on Mt. The computation of the ARL follows the

traditional procedure proposed by Brook and Evans (1972) and Lucas and Saccucci (1990). The

transition probability de�ned in (19) can be reexpressed as follows

P (j; k) = Pr [�k � �j � !=2 � (Mt � �j)�t � �k � �j + !=2]

= Pr

�
�k � �j � !=2

�t
� �j �Mt �

�k � �j + !=2
�t

� �j
�

= Pr [exp (b1) < exp (Mt) � exp (b2)]

= Pr
�
exp (b1) < S

2
t =�

2
0 � exp (b2)

�
; (26)

where, b1 = (�k � �j � !=2) =�t��j , b2 = (�k � �j + !=2) =�t��j . The probability (26) is computed

using that S2t =�
2
0 � �

�
(n� 1) =2; 2�2=

�
(n� 1)�20

��
. The ARLZS o ARLSS are calculated by (24) and

(25), respectively.

13



5.3 Optimisation of parameters

It is important to note that it is considering a process Xt � N(�0; �2�2). Let � = (�min; �max; p0; a; h)

be the parameters that de�ne the AEWMA-S2 chart, and let ARLZS(� ; �) be the ARL of a scheme

with parameters equal to � and shift � . Let ARLZS0 be the in-control ARL. In order to evaluate the

performance of an AEWMA-S2 chart in a set of shifts � = (�1; :::; �k) we need to de�ne a function f

(�; � ) : Rk ! R, which summarises the overall performance of the chart along the alternative shifts � :

This function will be minimised when the optimal parameters �� are used. That is, �� is the solution

of the following optimisation problem:

min
�
f (�; � ) :

subject to:

ARLZS (1; �) = ARLZS0 ;

(27)

Here, we use the weighted Euclidean distance to de�ne the function f (�; � ):

f (�; � ) =

kX
i=1

!i
�
ARLZS (� i; �)�ARL�(� i)

�2
; (28)

where ARL� (� i) is the minimum ARL for shift � i attained using the optimal EWMA-S2 chart, as

shown in Table 1. This function is simple and has good performance. Besides, it allows us to specialise

the chart over some range of values in which we are more interested. Of course, other choises for

f (�; � ) can be used, for instance, f (�; � ) =
kP
i=1
ARLZS (� i; �) :

Table 2 shows the optimal values �� for ARLZS0 = 200 based on (27) and (28) with rational

subgroup of size n = 5: For each value of ARLZS0 two di¤erent designs are proposed and compared.

In the �rst, the optimisation (27) is based on the range of shifts � 2 [1:1; 2] ; where (28) uses higher

weights on the extremes of this interval. By doing so, we want to assure good sensitivity to small

shifts, without losing e¢ ciency at large shifts. The resulting charts are denoted as AEWMA-S2-1:

AEWMA1-S2-1, AEWMA2-S2-1, AEWMA3-S2-1 and AEWMA4-S2-1, respectively. In the second

design, the optimisation (27) is based on the range of shifts � 2 [1:4; 2] ; where (28) again uses higher

weights on the extremes of this interval. In this case, we want to assure good performance at moderate

and large shifts. The resulting charts are denoted as AEWMA-S2-2: AEWMA1-S2-2, AEWMA2-S2-2,

AEWMA3-S2-2 and AEWMA4-S2-2, respectively. For simplicity, and without any loss of generality,

�0 = 0 and � = 1 is assumed.
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ARLZS0 =200 ARLSS0 =200

�� ��min ��max a� p�0 h� ��min ��max a� p�0 h�

Panel A

AEWMA1-S2-1 0.0632 0.1115 2.3458 0.3584 0.2225 0.0181 0.2249 7.5594 0.8866 0.0546

AEWMA2-S2-1 0.0277 0.0787 4.0097 0.0278 0.1188 0.0145 0.7524 7.2188 0.7570 0.0445

AEWMA3-S2-1 0.0769 0.1399 8.5720 0.5060 0.2062 0.0385 0.2510 7.8067 0.8832 0.1085

AEWMA4-S2-1 0.0886 0.5863 9.4988 0.9983 0.2182 0.0821 0.1121 5.1453 0.2222 0.2059

Panel B

AEWMA1-S2-2 0.1888 0.6239 5.8904 0.2990 0.6812 0.1271 0.3439 3.8760 0.2403 0.5240

AEWMA2-S2-2 0.3731 1.0000 9.3896 0.2425 0.6875 0.1770 0.3395 9.5038 0.0357 0.4029

AEWMA3-S2-2 0.2441 0.6578 4.3676 0.3361 0.7717 0.1527 0.2843 3.1404 0.5305 0.4165

AEWMA4-S2-2 0.5644 0.6644 1.1987 0.8917 0.8373 0.2377 0.4377 10.9715 0.9900 0.4589

Table 2: Optimal parameters of the AEWMA-S2 control charts. Panel A: parameters optimised for the range

� 2 [1:1; 2]. Panel B: parameters optimised for the range � 2 [1:4; 2].

6 Comparisons

In this section, the four proposed AEWMA-S2 control charts are compared. Besides, they are compared

to other control charts such as Shewhart-S2 control chart, the EWMA-S2 control charts, the EWMA-

S2 of Castagliola et al (2010) called here EWMA-S2-CT and the adaptive EWMA control charts for

the variance of Shu (2008) called here AEWMA-S2-SH. Unless otherwise stated, all the comparisons

were made using: zero-state ARL, ARL0 = 200 and n = 5.

Table 3 shows that the performance of the four proposed AEWMA-S2-1 charts are similar for

small and medium shifts, in the range (1; 1:4]. However, the AEWMA1-S2-1 design shows a slightly

better performance than the others in approximately the interval (1; 1:2]. In the interval of shifts

(1:2; 3], the AEWMA2-S2-1 shows the better performance and followed by AEWMA3-S2-1 y 1-S2-1.

The AEWMA4-S2-1 design loses e¢ ciency for medium and large shifts.

On the other hand, Table 3 shows that also the four AEWMA-S2-2 designs have similar performance

for small and medium shifts in the variance process, approximately (1; 1:5]. In that range, it can be

seen the AEWMA1-S2-2 is the best one. In the interval of shifts � 2 (1:5; 3], the AEWMA2-S2-2

design shows the better performance. The AEWMA4-S2-2 design loses e¢ ciency for medium and

large shifts.

In Table 3, we can compare the four AEWMA-S2-1 designs and a Shewhart-S2 control chart with

the same rational subgroup size, n = 5 (S-1 design). It can be seen that Shewhart control chart

is not competitive for small and medium shifts, even up to � < 2. Also, we can compare the four

AEWMA-S2-2 charts and the same Shewhart-S2 design (S-1). In this case, S-1 is still less competitive

than four AEWMA-S2-2 designs for � < 3.
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Besides, we can compare the ARL values of the four AEWMA-S2-1 designs and two alternative

EWMA-S2 designs. These EWMA-S2 charts are designed to get minimum ARL values at shifts � = 1:1

(E-1) and � = 1:5 (E-2). In this case, it can be seen that the four proposed AEWMA-S2 designs and

only E-1 have a similar performance for small shifts, the AEWMA1-S2-1 is the best one. E-1 is only

competitive in � = 1:1. E-2 is not competitive for small and medium shifts, up to � = 1:3. For � = 1:4,

the �rst three AEWMA-S-1 charts are better than E-2, even the AEWMA2-S2-1 up to � = 1:5. For

large shifts, approximately � > 1:5, the �rst three AEWMA-S2-1 designs are competitive with E-2

but E-1 is not competitive. De�nitely, the four proposed AEWMA-S2-1 control charts show good

performance through the whole shifts range. Additionally, we can compare the ARL values of the

second four AEWMA-S2-2 charts and the EWMA-S2 with designs that were obtained for minimum

ARL values at shifts � = 2 (E-3) and � = 3 (E-4). In this case, it can be seen that the four proposed

AEWMA-S2 designs have good performance up to � � 2. E-3 is competitive only for � > 2 and E-4

for � � 2:5. Note that for � = 2, the �rst three designs have a good behavior and AEWMA2-S2-2 is

the best one, even up to � = 3.

Moreover, Table 3 allows us to compare the ARL values of the four AEWMA-S2-1 designs with

two alternative EWMA-S2-CT charts. These EWMA-S2-CT charts are designed to get minimum

ARL values at shifts � = 1:1 (CT-1) and � = 1:5 (CT-2). This comparison shows that the four

proposed AEWMA-S2-1 control charts are more competitive than CT-1 for the whole range of shifts.

For small an medium shifts, � < 4, the four proposals are more competitive than CT-2. Furthermore,

we can compare the ARL values of the four AEWMA-S2-2 charts and the EWMA-S2-CT charts for

two design, with minimum ARL values at shifts � = 2 (CT-3) and � = 3 (CT-4). In this case, it

can be seen that the four proposed AEWMA-S2 control charts have a competitive performance for all

shift, CT-3 and CT-4 are only competitive for � � 2:5.

Our �nal comparison is between the proposed AEWMA-S2 control charts and the AEWMA-S2

control charts of Shu (2008). In this regard, Table 3 allows us to compare the four proposed AEWMA-

S2-1 control charts (designs optimized for � 2 [1:1; 2] as in Shu, 2008) with the AEWMA-S2-SH-1

(design optimized for � 2 [1:1; 2]). This design is labelled as SH-1. The �rst three proposed AEWMA-

S2-1 are better than SH-1 for small and medium shifts, approximately for � 2 [1:1; 1:2], where the

AEWMA1-S2-1 is the best one. In the interval � 2 (1:2; 1:4], the �rst three AEWMA-S2-1 control

charts are better than the AEWMA-S2-SH-1, where, the AEWMA2-S2-1 is the most competitive.

Then, in general, for large shifts, these designs are similar, being AEWMA4-S2-1 less competitive. It

is worth mentioning that, in the range � 2 (1:4; 1:7], the AEWMA2-S2-1 and 3-S2-1 are more e¢ cient

than SH-1, where, AEWMA2-S2-1 is the most competitive.
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ARLZS0 =200 �

1.1 1.2 1.3 1.4 1.5 1.6 1.7 2.0 2.5 3.0

1-S2-1 41.79 17.19 10.04 7.01 5.40 4.43 3.78 2.71 1.95 1.58

2-S2-1 41.99 17.20 9.91 6.82 5.18 4.18 3.52 2.43 1.70 1.39

3-S2-1 42.63 17.41 10.00 6.87 5.22 4.22 3.55 2.45 1.71 1.40

4-S2-1 43.96 18.19 10.60 7.41 5.74 4.74 4.08 3.00 2.25 1.87

1-S2-2 53.09 21.14 11.22 7.16 5.14 3.99 3.26 2.16 1.51 1.27

2-S2-2 54.44 21.74 11.43 7.22 5.15 3.97 3.23 2.14 1.50 1.26

3-S2-2 54.19 21.73 11.47 7.26 5.18 3.99 3.26 2.15 1.51 1.27

4-S2-2 53.85 21.78 11.56 7.33 5.23 4.05 3.31 2.21 1.55 1.30

S-1 95.15 42.39 21.58 12.61 8.24 5.86 4.46 2.55 1.61 1.30

E-1 41.98 18.19 11.13 8.06 6.40 5.37 4.67 3.48 2.64 2.26

E-2 51.41 20.64 11.07 7.14 5.18 4.06 3.35 2.29 1.62 1.34

E-3 58.11 24.00 12.64 7.87 5.50 4.17 3.36 2.17 1.51 1.27

E-4 65.03 28.27 15.04 9.25 6.32 4.67 3.66 2.24 1.50 1.25

CT-1 46.33 20.64 13.17 9.73 7.76 6.48 5.58 3.96 2.67 2.03

CT-2 58.98 22.47 11.66 7.39 5.30 4.13 3.39 2.28 1.60 1.33

CT-3 60.70 24.91 12.99 8.02 5.57 4.20 3.36 2.16 1.49 1.26

CT-4 65.02 28.27 15.04 9.25 6.32 4.67 3.66 2.24 1.50 1.25

SH-1 44.37 18.20 10.48 7.17 5.39 4.29 3.55 2.35 1.59 1.30

SH-2 56.41 22.63 11.81 7.40 5.23 4.01 3.26 2.14 1.49 1.25

Table 3: ARL in zero state comparison between competing control charts for ARL0 = 200 and n = 5. The

following charts are considered (Abbreviations for each chart appear in parentheses): AEWMA1-S2-1 (1-S2-1),

AEWMA2-S2-1 (2-S2-1), AEWMA3-S2-1 (3-S2-1), AEWMA4-S2-1 (4-S2-1), AEWMA1-S2-2 (1-S2-2), AEWMA2-

S2-2 (2-S2-2), AEWMA3-S2-2 (3-S2-2), AEWMA4-S2-2 (4-S2-2), Shewhart-S2 (S-1), EWMA-S2-1 (E-1), EWMA-

S2-2 (E-2), EWMA-S2-3 (E-3), EWMA-S2-4 (E-4), EWMA-S2-CT1 (CT-1), EWMA-S2-CT2 (CT-2), EWMA-

S2-CT3 (CT-3), EWMA-S2-CT4 (CT-4), AEWMA-S2-SH-1 (SH-1) and AEWMA-S2-SH-2 (SH-2). The adaptive

chart with the lowest ARL at each shift is shown in bold.

Finally, in table 3 we can compare the four proposed AEWMA-S2-2 control charts (designs opti-

mized for � 2 [1:4; 2] as it was mentioned in the previous section) with the AEWMA-S2-SH-2 (design

optimized for � 2 [1:4; 2] as it was mentioned in Shu, 2008). This design is labelled as SH-2. In

general, again, it can be seen that the ARL of the four proposed AEWMA-S2-2 designs and SH-2

are similar in almost all range of shifts. The four AEWMA-S2-2 proposed take advantage of SH-2 for

small and medium shifts, approximately for � 2 (1; 1:6], except for the AEWMA4-S2-2 in the interval

� 2 [1:5; 1:6]. The AEWMA1-S2-2 is the most competitive up to � = 1:5 and the AEWMA2-S2-2

for � = 1:6. The AEWMA2-S2-2 is the most competitive for � = 1:7. It can be concluded that the

proposed AEWMA-S2 control chart are more competitive than the AEWMA-S2-SH in terms of ARL

particularly for small and medium shifts.
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7 Conclusions

We have presented four adaptive EWMA control charts for monitoring the variance of a variable that

represents a quality characteristic in a particular process. These control charts work with a time

varying smoothing parameter. The proposed AEWMA-S2 control charts are very easy to understand

and to implement in the practice. We should have in mind that the size shift depends on the nature of

the monitored process. Since in actual operation, smaller shifts are more frequent than larger shifts,

we have shown that these proposed charts have a good performance for small and medium shifts and

even for large shifts. Therefore, the proposed charts can be competitive with respect to the alternative

charts of the literature on a wide range of shifts.
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