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Abstract

Time-weighted charts like EWMA or CUSUM are designed to be optimal to detect a speci�c

shift. This feature, however, can make the chart suboptimal for some other shifts. If, for instance,

the charts are designed to detect a small shift, then, they can be ine¢ cient to detect moderate or

large shifts. In the literature, several alternatives have been proposed to circumvent this limitation,

like the use of control charts with variable parameters or adaptive control charts. This paper aims

to propose new adaptive EWMA control charts (AEWMA) based on the assessment of a potential

misadjustment, which is translated into a time-varying smoothing parameter. The resulting control

charts can be seen as a smooth combination between Shewhart and EWMA control charts, which

could be e¢ cient for a wide range of shifts. Markov chain procedures are established to analyse

and design the proposed charts. Comparisons with other adaptive and traditional control charts

show the advantages of our proposals.
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1 Introduction

Shewhart (1931), in studying the fundamentals of Statistical Process Control (SPC), supposed a

change of paradigm in the concept of quality control, changing the focus from a control based on

the veri�cation of the �nal speci�cations to one based on the monitoring of the intrinsic variability

of a process. Shewhart proposed charts based on monitoring the value of a statistic on independent

samples, usually denoted as rational subgroups. These charts are known as Shewhart control charts.

Let X be a random variable representing a quality characteristic of a product obtained from the

process we want to monitor. Let us denote the mean and variance of X when the process is in control

as �0 and �
2; respectively. Let xi1; xi2; ::::; xin be a set of realisations of X that conform the i-th

rational subgroup of size n, being �xi its sample mean. A Shewhart �X control chart monitors the

evolution of the sequence of the independent sampling means �xi with the aim of ensuring the process

mean does not change. Under the assumption that �X is normal, the control limits of the Shewhart �X

chart are

�0 � 3�=
p
n: (1)

These limits correspond to a prediction interval for �X of coverage 1�� = 0:9973: The chart triggers an

alarm if a sample mean falls outside these limits. The probability of a false alarm is then � = 0:0027.

Similarly, there are Shewhart control charts for some other statistics, like sampling variances, standard

deviations, coe¢ cient of variations and so forth. The evaluation of a control chart is usually performed

in terms of the average run length (ARL), which is the average number of independent samples required

to signal a change for a particular shift. The best chart will be the one with the lowest ARL when the

process is out of control, for a given ARL when the process is in-control, denoted as ARL0.

It is well known that �X control charts are not very sensitive to small shifts in the process mean. For

example, it is easy to �nd out that if the shifted mean �1 is such that j�1 � �0j < 2�, the probability

of detecting such a change with the limits (1) is very small for practical purposes. In order to detect

small shifts we need a statistics with lower variance that, for a given false alarm rate, can provide

narrower control limits. This could be attained by using a larger subgroup size n: However, since

Shewhart charts are based on independent samples, a larger rational subgroup size might lead to a

larger average time to signal (ATS), or a larger average number of observations to signal (ANOS),

apart from a higher cost. In order to increase the sensitivity of Shewhart control charts to smaller

shifts, various studies have proposed the use of supplementary run rules. The run rules, initially

proposed by Page (1955a), are a set of rules that help to detect when a sequence of points (i.e. a run)

in a Shewhart control chart is very unlikely if the process were in control, even if the points are inside

the control limits.
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An alternative approach to improve the sensitivity of Shewhart control charts is by means of an

adaptive design of the parameters; typically, variable sample sizes of the rational subgroups (VSS),

variable sampling intervals (VSI) or some combination of both approaches. The main idea of this

approach is to increase the sampling e¤ort (larger size or higher frequency) only when data show

some evidence of a shift. By doing so, we could take advantage of a larger information set without

incurring a high cost. Basically, in a VSS chart, if the point falls in the so-called warning region, i.e. a

region inside the control limits but close to them, the next sample size should be large to increase the

sensitivity of the chart. However, if the point falls in the central region, the next sample size can be

small, since there is no evidence that the process had shifted (Daudin, 1992; Prabhu et al., 1993, 1994;

Costa, 1994; Zimmer et al., 1998; Wu, 2011; Zhang and Wang, 2012, and Castagliola et al., 2012).

Similarly, in a VSI chart, the time to take the next sample should be smaller if the point falls in the

warning region because the process could require a quick adjustment. Conversely, the time to take

the next sample can be long if the current point falls in the central region, since the risk of being out

of control is very low (Reynolds et al.,1988; Cui and Reynolds, 1988; Runger and Pignatiello, 1991;

Costa, 1994, 1999a, 1999b; Tagaras, 1998; Mahadik, 2013).

An alternative procedure to reduce the variance of the monitoring statistics is to use a statistic with

memory; that is, a statistics based on some average of current and past data, instead of a statistics

based only on the last rational subgroup. By doing so, we are increasing the e¤ective sample size,

leading to a reduction in the sampling variability that would ease the detection of small shifts. These

kinds of charts are denoted as time-weighted charts. These charts do not increase sampling costs;

however, merging present and past observations in the same statistic can have a negative e¤ect. If

the process mean shifts, a monitoring statistic with memory would merge data corresponding to the

shifted process with previous data, when the process was in control. This e¤ect would bias the value

of the statistics, masking the shift. This bias could provoke a delay in the detection. Therefore, if

the shift is large, it might not be worthwhile to use a monitoring statistics with memory. Hence,

time-weighted charts are competitive only in the case of small shifts. The decision of whether to

use a Shewhart control chart or a memory control chart can then be interpreted as a particular case

of the traditional bias-variance trade-o¤. Shewhart control charts have no bias, but large variance;

whereas time-weighted charts have lower variance but estimate the shift with bias. The most popular

time-weighted charts are CUSUM and EWMA charts. CUSUM control charts were introduced by

Page (1954, 1955b) and then extended, among others, by Woodall and Adams (1993). The EWMA

control chart was introduced by Roberts (1959) and subsequently studied by Robinson and Ho (1978),

Hunter (1986), Waldmann (1986), Montgomery et al. (1987), Crowder (1987a and 1989) and Lucas
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and Saccucci (1990), among others. The EWMA control chart is based on the statistic

yt = �xt + (1� �) yt�1 = (1� �)y0 + �
t�1X
i=0

(1� �)ixt�i; (2)

where � is a smoothing parameter such that 0 < � � 1; and y0 = �0. If � < 1; the statistic (2) is

an exponentially weighted average of current and past observations. The smaller the �, the larger the

weight to past data and, hence, the larger the e¤ective sample size. Therefore, if we want to detect a

small shift we would use a small value of �: The variance of yt for large values of t converges to

�2y =
�2

2��
�

=
�2

Me¤
; (3)

where, Me¤ = (2 � �)=� can be interpreted as the (asymptotic) e¤ective number of observations or

the e¤ective memory length, which grows as � decreases. The control limits of the EWMA chart for

large t are then

�0 � L�
r

�

2� �; (4)

where L is a parameter that depends on the desired ARL. The optimal design of the EWMA charts

depends on the value of �: Once � is selected, the chart would be optimal only for a speci�c shift.

Similar comments also apply to CUSUM charts. With the aim of adding �exibility to CUSUM and

EWMA charts, so that they perform well for either small or large shifts, VSI and VSS versions of these

charts were proposed by Sawalapurkar et al. (1990), Reynolds et al. (1990), Baxley (1995), Keats et al.

(1995), Reynolds (1995, 1996), Stoumbos and Reynolds (1996, 1997), Reynolds and Stoumbos (1998),

Tagaras (1998), Reynolds and Arnolds (2001) and Arnolds and Reynolds (2001), among others.

Alternatively, adaptive time-weighted charts can be proposed based on time-varying versions of

the parameters that control the length of memory of time-weighted charts.(Sparks, 2000; Capizzi

and Masarotto, 2003). In the case of an adaptive EWMA (AEWMA), an appropriate time-varying

parameter � could make the chart sensitive to a large range of shifts.

Capizzi and Masarotto (2003) developed an AEWMA chart based on weighting recent observations

using an appropriate function of the current error et = xt � yt�1. One goal of this weighting scheme

is to diminish the so-called inertia problem of EWMA charts (Yashchin, 1987), which reduces the

e¢ ciency of the detection. If, for example, yt�1 is close to a control limit and xt falls near the opposite

control limit, the error et would be large. This large error would lead to a reduced value of �; allowing

the statistics to become closer to the new data quickly.

In this article, alternative AEWMA charts are proposed. The rationale behind the proposed adap-

tive charts is to make � dependent on some measure of the potential presence of a shift. Accordingly,

when the data show evidence of being a¤ected by a large shift, the value of � would tend to increase.
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Conversely, if the data show evidence of being in control or, perhaps, being a¤ected by a small shift,

the value of � would tend to be smaller.

The remainder of the article is organised as follows. In Section 2, the scheme of the proposed

adaptive EWMA control chart is introduced. In Section 3, AEWMA control charts with time-varying

� based on the last observation xt are proposed. In Section 4, AEWMA control charts with time

varying � based on the level of the control statistics yt�1 are proposed. Section 5 presents the results

of several comparisons between alternative control charts and the proposed AEWMA control charts.

Finally, in Section 6, some concluding remarks are given.

2 Adaptive EWMA strategy

The design of an EWMA chart consists of selecting the values of � in (2) and L in (4). They can be

chosen in such a way that the chart is optimal for detecting a prespeci�ed shift ��, such that the new

mean is �1 = �0 + ��. The optimisation of the design parameters of the EWMA chart was studied

by Crowder (1987a, 1989) and Lucas and Saccucci (1990), among others. The optimal design can be

based on approximating the ARL with a discrete Markov chain. The resulting ARL is a function of �;

� and L; that is, ARL�ARL(�; �; L): The optimal values of � and L that minimise ARL(�; L; �) for

a given shift � and ARL0 can be obtained using traditional nonlinear optimisation procedures. This

optimisation problem can be written as

min
�;L
ARL (�; L; �) subject to. ARL (�; L; 0) = ARL0:

Whereas an optimal EWMA chart needs a di¤erent value of � for each �, the same value of �

can be nearly optimal for some range of shifts. However, there is not a single value of � that can

provide optimal or nearly optimal EWMA charts for both small and large values of �: To illustrate

this �nding, we have calculated the optimal pair (�; L) denoted as (��; L�) for the values � 2 [0:1; 3] and

ARL0 = 100. The corresponding minimum ARL is denoted as ARL�; that is ARL� =ARL(��; L�; �).

Figure 1 and Table 1 show the values of �� for each � as well as the range of values of �; denoted as

the interval [�a;�b]; such that the corresponding ARL is not greater than a 5% of ARL�; that is, for

� 2 [�a;�b]; then ARL(�; L; �)� 1:05ARL(��; L�; �). For instance, if � = 1 then it is possible to obtain

an ARL2 [6:96; 7:31] for � 2 [0:0874; 0:3158]. For example, if � = 0:10, we obtain reasonable values

of ARL for small shifts from � � 0:5 up to � � 1; but not for larger or smaller shifts. On the other

hand, if we use, for instance, � = 0:5, it is possible to obtain acceptable values of ARL for � > 1:5;

but not for small shifts. Therefore, an EWMA chart with good performance for all shifts would need

to adapt the value of � to the expected shift.
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Figure 1: Relationship between the optimal � and the range de�ned by �a and �b with the shift. The

values �a and �b lead to an ARL of value 1:05ARL�:

ARL0 = 100 ARL0 = 500

� �� ARL� 1.05ARL� �a � �b �� ARL� 1.05ARL� �a � �b
0.10 0.010 75.71 79.50 0.010-0.080 0.010 216.73 227.56 0.010-0.017

0.25 0.024 38.11 40.01 0.010-0.073 0.016 74.39 78.10 0.010-0.034

0.50 0.066 17.33 18.20 0.021-0.141 0.047 28.76 30.20 0.022-0.085

0.75 0.121 10.28 10.79 0.051-0.225 0.087 15.80 16.59 0.045-0.147

1.00 0.183 6.96 7.31 0.087-0.316 0.133 10.21 10.72 0.072-0.217

1.25 0.250 5.11 5.36 0.128-0.410 0.186 7.24 7.60 0.104-0.292

1.50 0.324 3.95 4.15 0.173-0.508 0.242 5.46 5.74 0.139-0.369

1.75 0.405 3.18 3.34 0.224-0.607 0.301 4.31 4.52 0.177-0.449

2.00 0.493 2.62 2.75 0.286-0.707 0.365 3.51 3.69 0.218-0.532

2.25 0.579 2.21 2.32 0.356-0.799 0.437 2.94 3.08 0.263-0.620

2.50 0.658 1.89 1.98 0.424-0.884 0.517 2.50 2.62 0.321-0.709

2.75 0.728 1.64 1.72 0.481-0.963 0.599 2.15 2.25 0.391-0.795

3.00 0.788 1.45 1.53 0.524-1.000 0.676 1.86 1.96 0.461-0.874

Table 1: ARL reached at each � using the corresponding � . ARL� is reached using ��. 1:05ARL� is reached

using �a or �b
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The goal of an AEWMA chart is to have a performance that is optimal or nearly optimal for

any shift. Here, we will analyse alternative strategies to obtain AEWMA charts with time-varying

smoothing parameters, using the representation

yt = �txt + (1� �t) yt�1; y0 = �0: (5)

As shown above, this could be attained by making �t dependent on the shift. However, in practice,

the shift is unknown (otherwise, we would trigger the alarm). Therefore it is necessary to �nd an

alternative way of designing an adaptive EWMA chart. A natural option is to �nd a measure of

the evidence of shift shown by the data, and translate that measure into an appropriate value �t:

Conversely, if the data show little evidence of shifting, the parameter �t would be kept at a lower

value. A small value of � would increase the memory and, as a result, would keep the statistics with

low variance, easing the detection of a potential small shift. Therefore, the parameter �t is used to

manage the trade-o¤ of having a control statistic yt with low bias but high variance, or vice versa.

Three alternative measures of a potential shift are analysed: (i) based on the distance between the

last observation xt and the target �0; (ii) based on the distance between the last observation xt and

the previous value of the control statistics yt�1; following a similar fashion as in Capizzi and Masarotto

(2003); and (iii) based only on the value of yt�1: For each case, alternative score functions to translate

each measure into a time-varying smoothing factor are also discussed. In each case, procedures to

compute the ARL and to optimise the charts based on Markov chain approximations are proposed.

3 AEWMA charts with �t based on the last observation xt

In this section, we present some proposals for �t as a function of the potential misadjustment based

on the information provided by the last observation xt: The �rst proposal, denoted as AEWMA1, is

based on the standardised distance between xt and the target �0: The second proposal, denoted as

AEWMA2, is based on the standardised distance between xt and the last value of the monitoring

statistics yt�1: Finally, the third proposal is a combination of the two proposals above.

3.1 AEWMA1 chart

This adaptive control chart measures the potential misadjustment by standardising the last observation

xt. This is performed by using the following statistics:

S1t =

�
xt � �0
�

�2
: (6)

This distance tends to be larger in the presence of a shift, therefore it is an interesting measure of the

potential misadjustment. We need now a transformation function that translates S1t into a smoothing
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factor. This function will be based on the statistical properties of S1t: Given the information up to

yt�1; the value of xt is a random variable. If the process is in control, and under the assumption of

normality, it holds that S1t follows a central chi-squared distribution of one degree of freedom, �21.

The cumulative distribution function is de�ned as

F1t = P
�
�21 � S1t

�
: (7)

Note that F1t 2 [0; 1] and, it tends to approach unity as the process departs from the in-control state.

Therefore, it could be used as �t: However, the variability of F1t can be very large, provoking a poor

performance in the AEWMA chart. It should be noted that, according to (5), a large value of �t

implies the loss of most of the memory accumulated in yt�1; which can no longer be recovered, even

if �t decreases in the following instants. This loss of memory would lead to a large variance of the

monitoring statistic yt; decreasing its sensitivity. We need, then, some e¢ cient transformation that

helps to translate F1t into a smoothing parameter �t: Many transformations can be proposed. A

simple transformation would be to limit the range of variation of F1t; applying a linear transformation

between a lower value �min and an upper value �max as follows:

�
(1)
1t = �min + (�max � �min)F1t; (8)

where, �min and �max are values that are optimised to attain the lowest ARL for a given ARL0, and

computed with the procedure described below. A second alternative that adds some �exibility to the

transformation (8) is to use also a power transformation as:

�
(2)
1t = �min + (�max � �min)F a1t; (9)

where, a is a parameter to be optimised together with �min and �max. The third proposal to transform

F1t into �t is to use some threshold value, p0; such that if F1t � p0 then �t = �min: Consequently, we

will maintain a low smoothing factor unless the evidence of shift is large. If F1t > p0; we maintain

a similar transformation as in (9) in such a way that the whole transformation is continuous. The

resulting smoothing factor is

�
(3)
1t = �min + (�max � �min) q1t;

q1t =

8><>:
0 if F a1t � p0;

F a1t � p0
1� p0

otherwise,
(10)
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where the threshold p0 is a constant to be optimised together with a; �min; and �max: A fourth

alternative, with further �exibility, is to �t the following polynomial:

�
(4)
1t = max(0;min(1; r1t)); (11)

r1t = d+ (b+ cF1t)
a : (12)

This fourth option also requires the optimisation of four parameters. In our experiments, option

(10) is the one with better performance. Therefore, for the sake of conciseness, this transformation

will be the only one that will be assumed hereafter, and labelled as the AEWMA1 chart. The chart

triggers an alarm if jyt��0j > h1�, where h1 is a threshold that depends on the ARL0 and is obtained

in the same optimisation exercise as p0; a; �min; and �max:

3.2 AEWMA2 chart

This adaptive control chart measures the potential misadjustment by measuring the di¤erence between

the current observation xt and the value of the control statistic in the previous time, yt�1. This is

carried out by using the following statistic:

S2t =

�
xt � yt�1

�

�2
; (13)

which, similar to the previous proposal, tends to increase in the presence of a shift. This statistic

holds that

S2t =

�
xt � �0
�

+
�0 � yt�1

�

�2
: (14)

Then, conditioning on yt�1; S2t follows a non-central chi-squared distribution of one degree of freedom,

�21(t); with noncentrality parameter t = (�0 � yt�1) =�: As in the AEWMA1 chart, we could use the

cumulative distribution function of �21(t) to translate S2t into a smoothing parameter, and then use

the transformation (10) to obtain a time-varying smoothing parameter. It can be seen, however, that

the noncentrality parameter t can be very small. For instance, if � = 0:1; expression (3) shows that

yt�1 will have very small variability, �2yt � 0:05�2: Consequently, yt�1 will be very close to �0 if we use

as a unit of distance the standard deviation �: Therefore, the order of magnitude of the noncentrality

parameter t will be very small for practical purposes. For the sake of simplicity, the conversion of

S2t into a smoothing factor will be performed as follows:

�2t = �min + (�max � �min) q2t;

q2t =

8><>:
0 if F a2t � p0;

F a2t � p0
1� p0

otherwise,
(15)

F2t = P (�21 � S2t):
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The chart triggers an alarm if jyt � �0j > h2�, where h2 is a threshold that depends on the ARL0,

and is obtained in the same optimisation exercise as p0; a; �min; and �max.

As explained above, since the variance of yt�1 is much smaller than that of xt for small and

moderate values of � (i.e. those used in practice), the overall behaviour of S1t and S2t will not be

dramatically di¤erent. However, we would expect some di¤erences depending on the out-of-control

situation. For instance, if a process is changing slowly, it can be expected that S1t tends to take higher

values than S2t; because yt�1 will also tend to shift towards the new mean. As a result, both xt and

yt�1 would shift towards the same direction; consequently, their di¤erence in (13) could not increase

rapidly enough. In the case of an abrupt change, the behaviour of S1t and S2t depends on yt�1. If

it happens that yt�1 is close to a control limit and the sudden shift occurs in the opposite direction,

S2t will tend to be larger than S1t: This situation is that described in the so-called "inertia problem"

of EWMA charts, as explained in Yaschin (1987) and Capizzi and Masarotto (2003), among others.

Conversely, if the shift is in the same direction as where yt�1 is located, S1t would be more e¤ective.

The AEWMA chart proposed by Capizzi and Masarotto (2003) is also based on xt � yt�1. They

propose the statistic

yt = w (et)xt + (1� w (et)) yt�1; ; y0 = �0; (16)

where, et = xt � yt�1, and w (et) is some score function that translates et into a smoothing para-

meter monotonically non-decreasing in jej. They propose three alternative score functions, but their

performance is similar if their parameters are properly optimised.

3.3 AEWMA3 chart

Since both the AEWMA1 and AEWMA2 charts can be competitive depending on the speci�c situation,

it would be interesting to propose a chart that could combine both approaches. This can be made in

several ways. Since we want to take advantage of their di¤erent detection capabilities, we propose a

chart, denoted as AEWMA3, which at each time computes both S1t and S2t; then compute S3t as

S3t = max(S1t; S2t): (17)

The conversion of S3t into a smoothing factor �3t is performed just as in (15). The chart triggers an

alarm if jyt� �0j > h3�, where h3 is a threshold that depends on the ARL0 and is optimised togheter

with the parameters used in the computation of �3t: This AEWMA3 chart would tend to behave

like AEWMA1 or AEWMA2, depending on which is more pessimistic with respect to the evidence of

misadjustment.
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4 AEWMA chart based on the value of the control statistics

In this AEWMA chart, denoted as AEWMA4, �t is based on the distance between yt�1 and the control

limit H = �0 � h4�, using the statistic

Dt =

����yt�1 � �0H � �0

���� = ����yt�1 � �0h�

���� ;
which holds that 0 � Dt � 1: In the same fashion as in previous proposals, the conversion of Dtr into

a time-varying smoothing factor �4t is made by

�4t = �min + (�max � �min) q4t; (18a)

q4t =

8><>:
0 if Dat � p0;

Dat � p0
1� p0

otherwise.
(18b)

As before, the chart triggers an alarm if jyt � �0j > h4�, where h4 depends on the ARL0 and is

optimised togheter with the parameters �min, �max; p0 and a shown in (18). Notice that, in this case,

given yt�1, the potential misadjustment, Dt, is deterministic.

5 Computation of ARL using a Markov chain approach

Similar to the Markov chain model suggested by Lucas and Saccucci (1990) or Capizzi and Masarotto

(2003), we can approximate the value of ARL by discretising the in�nite-state transition probability

matrix of the continuous-state Markov chain de�ned by (5). For convenience, we rewrite the control

statistics of the AEWMA as

yt = yt�1 + (xt � yt�1)�t: (19)

The procedure consists of dividing the interval between the upper and the lower control limits, of

width 2h�; into an odd number ms = 2m+ 1 of subintervals 
j , j = �ms;�ms + 1; :::; ms; of width

� = 2h�=ms. The intervals 
j are then interpreted as states. The control statistic yt is considered to

be in the transient state 
j , at time t, if �j ��=2 < yt < �j +�=2 , where �j is the midpoint of the

jth interval 
j . Furthermore, yt falls in an absorbing state when it exceeds a threshold H = �0 + h�

or �H. The transition probability matrix between states can be represented in partitioned form as

P =

0@ R (I�R)u

0 1

1A ; (20)

where R is an ms�ms submatrix that contains the probabilities rjk of going from the transient state

j to the state k; I is the ms �ms identity matrix; and u is an ms � 1 vector of ones. The elements of
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the vector (I�R)u are the probabilities of jumping to the absorbing state from the transient state

j. To approximate these probabilities, it is customary to assume that the statistic yt�1 is equal to �j

whenever it is in state j. Therefore, using the form in (19), if yt�1 2 
j we use the approximation

yt = vj + (xt � vj)�j . The transition probability is then computed as

rjk = Pr (yt 2 
k j yt�1 2 
j) (21a)

= Pr(�k ��=2 < yt � �k +�=2 j yt�1 = vj) (21b)

= Pr f�k ��=2 < �j + (xt � �j)�t � �k +�=2g (21c)

= Pr f�k � �j ��=2 < (xt � �j)�t � �k � �j +�=2g : (21d)

In the next subsections we develop procedures to calculate rjk for the AEWMA1 to AEWMA4

charts.

5.1 Computation of ARL of AEWMA1 to AEWMA3 charts

In the AEWMA1 to AEWMA3 charts, the time-varying smoothing parameter �t depends on xt in a

nonlinear way (e.g., (10)). Therefore, there is not an obvious way to solve for xt in (21d). Besides, it

is not trivial how the random term (xt � �j)�t is distributed. Therefore, in order to compute (21d),

we discretise xt into nx = 2n+ 1 subintervals 	i, i = �n;�n+ 1; :::; n: Since xt � N(�; �2); we �rst

select a central interval of very high probability, and divide it into smaller intervals of equal width.

Then, we add the two intervals at the tails. Accordingly, we divide the interval �� 4:5�; into 2n� 1

intervals 	i; i = �n + 1;�n + 2; :::; n � 1; of width " = 9�=2n; being ui the midpoint of the i�th

interval 	i: If xt 2 	i then ui � "=2 < xt � ui + "=2: In each of these intervals, we approximate xt

to the value ui: We then have two more intervals that are at the tails the distribution of xt. The

lower tail is the interval 	�n: If xt 2 	�n then xt � u�n+1 � "=2; and would approximate xt to the

value u�n+1 � ". Similarly, the upper tail is the interval 	n: If xt 2 	n then xt > un�1 + "=2; and

would approximate xt to the value un�1 + ". The approximate values of xt can be used to assign an

approximate value to �t in each interval according to the de�nition of �t in each AEWMA chart.

Regarding the AEWMA1 chart, if xt 2 	i; we can write

S1t �
�
ui � �0
�

�2
� si: (22)

Then,

12



fi = P
�
�21 < si

�
;

qi =

8><>:
0 if fi � p0;

fai � p0
1� p0

otherwise,

�i = �min + (�max � �min) qi:

In order to compute rjk in (21) we will condition on each interval 	i, and apply the total probability

theorem as

rjk = Pr (�k � �j ��=2 � (xt � �j)�t � �k � �j +�=2) (23)

=
nX

i=�n
Pr (�k � �j ��=2 � (xt � �j)�t � �k � �j +�=2 j xt 2 	i) Pr(xt 2 	i) (24)

�
nX

i=�n
Pr
�
�k � �j ��=2 � (ui � �j)�(i) � �k � �j +�=2

�
Pr(xt 2 	i) (25)

=

nX
i=�n

Pr
�
vj + �

�1
(i) (�k � �j ��=2) � ui � vj + �

�1
(i) (�k � �j +�=2)

�
Pr(xt 2 	i) (26)

Note that since ui is a constant in each interval, the �rst probability in the right hand side of (26)

is straightforward to compute, since it is just 1 or 0. The second is also easy to compute, since we

assume that xt � N(�; �2). Once we obtain R; we can compute three type of ARLs: (i) ARL0 as

the in-control ARL since the beginning of the monitoring, or since the monitoring is restarted after

an alarm; (ii) ARLZS1 as the zero-state out-of-control ARL, which is the ARL if the process is already

out-of-control when the monitoring starts; and (iii) ARLSS1 as the steady-state out-of-control ARL,

which is the ARL if the process is in control when the monitoring starts, and a step shift in the mean

occurs at a later time such that the e¤ect of the starting value becomes negligible. For a discussion

between zero-state and steady-state ARLs, see Lucas and Saccucci (1990).

Given xt � N(�0 + ��; �2) and a set of parameters � = (�min; �max; p0; a; h), the zero-state ARL

for the AEWMA1 chart is computed as

ARLZSi (�; �) = p00 (I�R)
�1 u; i = 0; 1; (27)

where p0 is the initial probability vector. In the zero-state case, it is a vector of zeroes except for a one

at position (ms+1)=2. If � = 0, we obtain ARLZS0 ; and if � > 0; we obtain ARLZS1 . ARLSS1 (�; �) can

be approximated using the approach of Lucas and Saccucci (1990), based on a cyclical steady-state

probability vector that also uses R.

The ARL for the AEWMA2 and AEWMA3 charts is computed using the same procedure, but

13



instead of S1t in (22), we use S2t or S3t; respectively, de�ned as

S2t �
�
ui � vj
�

�2
� si and S3t � max

(�
ui � vj
�

�2
;

�
ui � �0
�

�2)
� si: (28)

5.2 Computation of ARL of AEWMA4 chart

For the AEWMA4 chart, since �4t does not depend on xt, expression (21d) is easier to handle. Solving

for xt in (21d) we obtain,

rjk = Pr

�
�k � �j ��=2

�t
� �j � xt �

�k � �j +�=2
�t

� �j
�
;

which can be calculated assuming that xt � N(�; �2).

5.3 Optimisation of parameters

Let � = (�min; �max; p0; a; h) be the parameters that de�ne the AEWMA chart, and let ARLZS(�; �)

denote the zero-state ARL of a scheme with parameters equal to � and shift �; where xt � N(�0 +

��; �2): Let ARLZS0 be the in-control ARL. In order to evaluate the performance of an AEWMA chart

in a set of shifts � = (�1; :::; �k) we need to de�ne a function f (�; �) : Rk ! R, which summarises the

overall performance of the chart along the alternative shifts �: This function will be minimised when

the optimal parameters �� are used. That is, �� is the solution of the following optimisation problem:

min
�
f (�; �) :

subject to:

ARLZS (0; �) = ARLZS0 ;

(29)

A choice for f (�; �) could be, for instance, f (�; �) =
kP
i=1
ARLZS (�i; �) : Here, we use the weighted

Euclidean distance

f (�; �) =

kX
i=1

!i
�
ARLZS (�i; �)�ARL�(�i)

�2
; (30)

where ARL� (�i) is the minimum ARL for shift �i attained using the optimal EWMA chart, as shown

in Table 1. This function is simple and has good performance. Besides, it allows us to specialise the

chart over some range of values in which we are more interested.

Table 2 shows the optimal values �� for ARLZS0 = 100 and for ARLZS0 = 500 based on (29) and

(30) with rational subgroup of size n = 1: For each value of ARLZS0 two di¤erent designs are proposed

and compared. In the �rst, the optimisation (29) is based on the range of shifts � 2 [0:5; 4] ; where (30)

uses higher weights on the extremes of this interval. By doing so, we want to assure good sensitivity to

small shifts, without losing e¢ ciency at large shifts. The resulting charts are denoted as AEWMA1-1,
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ARL0=100 ARL0=500

�� ��min ��max a� p�0 h� ��min ��max a� p�0 h�

Panel A

AEWMA1-1 0.0542 0.1131 5.1709 0.9911 0.3231 0.0427 0.1155 7.7337 0.9963 0.3832

AEWMA2-1 0.0570 0.0968 12.760 0.9766 0.3336 0.0365 0.1065 7.5720 0.9977 0.3447

AEWMA3-1 0.0560 0.0968 6.2038 0.9878 0.3301 0.0356 0.1040 11.8925 0.9928 0.3425

AEWMA4-1 0.0749 0.3214 8.1296 0.9920 0.4027 0.0519 0.1519 9.5670 0.8759 0.4280

Panel B

AEWMA1-2 0.1629 0.2514 9.9998 0.9421 0.7024 0.1253 0.2001 1.4180 0.9975 0.7550

AEWMA2-2 0.1705 0.2423 9.8870 0.9369 0.7194 0.1291 0.1956 14.9812 0.9409 0.7685

AEWMA3-2 0.1579 0.2429 7.5258 0.9682 0.6843 0.1355 0.2252 8.7293 0.9966 0.7832

AEWMA4-2 0.1896 0.2179 14.8801 0.9800 0.7590 0.0943 0.3034 9.9854 0.7347 0.6212

Table 2: Optimal parameters of the AEWMA control charts. Panel A: parameters optimised for the range

� 2 [0:5; 4]. Panel B: parameters optimised for the range � 2 [1; 4].

AEWMA2-1, AEWMA3-1 and AEWMA4-1, respectively. In the second design, the optimisation (29)

is based on the range of shifts � 2 [1; 4] ; where (30) again uses higher weights on the extremes of this

interval. In this case, we want to assure good performance at moderate and large shifs. The resulting

charts are denoted as AEWMA1-2, AEWMA2-2, AEWMA3-2 and AEWMA4-2, respectively. For

simplicity, and without any loss of generality, �0 = 0 and � = 1 is assumed.

6 Comparisons

The performance of the proposed AEWMA control charts is compared in terms of the zero-state

ARL in the range of shifts � 2 [0; 3]. Also, they are compared to some other charts like traditional

EWMA charts, Shewhart charts, the AEWMA control charts of Capizzi and Masarotto (2003) and

the ACUSUM of Jiang et al. (2008) control charts. The proposed AEWMA charts are based on the

optimal parameters shown in Tables 2 and 3.

Table 3 summarises the resuts for ARL0 = 100: This table displays the results of: 1) the proposed

AEWMA charts; 2) two EWMA charts that were designed to be optimal for shifts � = 1; with

�=0:183 (EWMA-1) and � = 2 with �=0:493 (EWMA-2) (see Table 1); 3) a Shewhart control chart

with rational subgroup size n = 1 (Shewhart); and 4) the best two AEWMA designs of Capizzi and

Masarotto (2003) based on the Huber score function. The �rst one, labelled CM-1, is obtained by

minimising the ARL in the range � 2 [0:5; 5] ; and the second one, labelled CM-2, is obtained by

minimising the ARL in the range � 2 [1; 5]. The adaptive chart with the lowest ARL at each shift is

displayed in bold.

Table 3 shows that for small shifts (� 2 [0:25; 0:5]) the charts designed for small shifts, with names
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�

0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

AEWMA1-1 40.03 17.66 10.83 7.76 4.91 3.52 2.66 2.06

AEWMA2-1 40.07 17.60 10.77 7.71 4.89 3.55 2.72 2.15

AEWMA3-1 40.06 17.62 10.79 7.72 4.89 3.53 2.69 2.12

AEWMA4-1 40.08 17.35 10.47 7.44 4.74 3.53 2.84 2.41

AEWMA1-2 47.56 19.38 10.65 7.06 4.12 2.87 2.16 1.69

AEWMA2-2 47.84 19.46 10.65 7.04 4.11 2.87 2.17 1.72

AEWMA3-2 47.15 19.22 10.61 7.07 4.16 2.91 2.20 1.74

AEWMA4-2 47.21 19.26 10.52 6.96 4.10 2.95 2.34 1.98

EWMA-1 46.82 19.11 10.49 6.96 4.12 2.97 2.36 2.00

EWMA-2 62.84 28.64 14.52 8.53 4.12 2.62 1.93 1.55

Shewhart 80.83 49.99 29.09 17.33 7.09 3.54 2.13 1.51

CM-1 40.08 17.52 10.63 7.56 4.78 3.46 2.64 2.05

CM-2 47.81 19.53 10.63 7.00 4.09 2.89 2.23 1.80

Table 3: ARL comparison between competing control charts for ARL0 = 100 and mean shift � = �0+ ��. The

adaptive chart with the lowest ARL at each shift is shown in bold.

with the extension �-1�, have a better performance than the respective charts designed for larger shifts,

named with the extension �-2�. It is noticeable, however, that the relative gain of using charts for small

shifts when the shift is indeed small is much larger than their relative loss when the shift is large. For

large shifts, most adaptive charts are rather similar for practical purposes.

For very small shifts (� = 0:25) the best chart is the proposed AEWMA1-1. AEWMA2-1,

AEWMA3-1, AEWMA4-1 and CM-1 are also at a very short distance. For small shifts (� 2 [0:5; 0:75]),

the best chart is the proposed AEWMA4-1. For moderate and large shifts (� � 1), charts with ex-

tension �-2�are better than those with extension �-1�, with the exception of the EWMA charts. For

� = 1:0; the best adaptive chart is the proposed AEWMA4-2, with an ARL equal to EWMA-1, which

is the optimal one for this shift. For larger shifts, � > 1; the best overall performance of an adaptive

chart is attained with the proposed AEWMA1-2, being surpassed only by the non-adaptive EWMA-2

and, for very large shifts (� = 3) by the Shewhart chart.

Table 4 summarises the results for ARL0 = 500: This table shows the ARL pro�les of: 1) the

proposed AEWMA charts; 2) two alternative EWMA charts designed to obtain the minimum ARL

values at shifts � = 1; with � = 0:133 (EWMA-1), and � = 2 with �=0:365 (EWMA-2) (see Table

1 ); 3) a Shewhart control chart with rational subgroup size n = 1 (Shewhart); 4) the two AEWMA

designs of Capizzi and Masarotto (2003) also used for ARL0 = 100; and 5) two ACUSUM charts of

Jiang et al. (2008), optimised to detect mean shifts over the range [0:5; 4] (J-1) and [1; 5] (J-2).

As in the case with ARL0 = 100; the charts that are designed to detect smaller shifts (with label

�-1�) show better performance for small shifts (� = 0:25; 0:5) than those designed for larger shifts (with
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�

0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

AEWMA1-1 84.97 29.50 16.95 11.80 7.27 5.13 3.78 2.80

AEWMA2-1 82.00 29.53 17.29 12.17 7.61 5.43 4.06 3.04

AEWMA3-1 82.70 29.80 17.43 12.24 7.57 5.30 3.85 2.80

AEWMA4-1 85.19 28.87 16.32 11.30 7.03 5.16 4.12 3.45

AEWMA1-2 126.55 35.28 16.69 10.40 5.80 3.96 2.94 2.28

AEWMA2-2 128.57 35.69 16.75 10.38 5.76 3.93 2.92 2.28

AEWMA3-2 128.53 35.66 16.69 10.33 5.76 3.98 3.01 2.37

AEWMA4-2 105.04 31.25 15.95 10.42 6.15 4.41 3.48 2.91

EWMA-1 121.21 34.23 16.30 10.21 5.78 4.08 3.19 2.65

EWMA-2 211.96 65.42 26.15 13.35 5.72 3.51 2.57 2.06

Shewhart 374.17 201.58 103.12 54.59 17.89 7.26 3.60 2.15

CM-1 86.41 29.91 17.11 11.88 7.27 5.06 3.65 2.64

CM-2 130.87 36.38 16.94 10.45 5.78 3.95 2.94 2.26

J-1 96.34 31.47 17.66 12.18 7.40 5.15 3.75 2.79

J-2 147.49 39.25 17.42 10.57 5.81 3.99 3.00 2.37

Table 4: ARL comparison between competing control charts for ARL0 = 500 and mean shift � = �0+ ��. The

adaptive chart with the lowest ARL at each shift is shown in bold.

label �-2�). Again, the advantages of the latter in the case of large shifts are much smaller than those

of the former for small shifts. That is, considering the full range of shifts � 2 [0:25; 3], the adaptive

charts optimised for small shifts have a better overall performance. We wonder then whether many

practitioners would �nd it more convenient to select an adaptive control chart that is optimised for

small shifts.

For small shifts (� � 0:5), the best performance is attained by the proposed control charts. For

� = 0:25; the best are AEWMA2-1 and AEWMA3-1, which is also very similar to the case with

ARL0 = 100. For � = 0:5; the best is AEWMA4-1. For � = 0:75; AEWMA4-1 and AEWMA4-2 have

the best performance, together with the non-adaptive EWMA-1. This result is also very close to that

observed in Table 3 with ARL0 = 100: At � � 1; the relative performance of the adaptive control

charts optimised for large shifts is superior. These charts behave in a very similar way, with di¤erences

in ARL between them, and with the optimal EWMA-1, of less than one unit. Overall, slightly better

performance in this range is attained by AEWMA3-2 and AEWMA2-2.

As a general recommendation, we can conclude that better overall performance and adaptability

can be attained by charts optimised for small shifts. If we are interested in very small shifts, we can

use the AEWMA2-1 or AEWMA3-1 charts; otherwise, the use of AEWMA4-1 could be recommended

for its overall performance.
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7 Conclusions

We have presented a family of adaptive control charts for monitoring the mean of a process based

on the use of a time varying smoothing parameter. This smoothing parameter tends to be larger

when there is some evidence that the mean could be shifting, reducing the memory of the chart and

easing the detection of the new mean. The resulting charts are e¢ cient for a wide range of shifts,

especially for small and very small shifts. It is only in these ranges where the di¤erences in ARL among

competing approaches become more noticeable; whereas for large shifts, the ARL of most charts is low

and comparable for practical purposes. The proposed AEWMA charts are very easy to understand

and implement.
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