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1 Statistical analysis and simulation using MATLAB

The Statistics Toolbox for MATLAB provides a large number of function for analyzing data. How-
ever, in practical situations, we are often faced with the difficulty of programming. In these notes,
we will consider different problems that will be solved both by programming and by using the
Statistical Toolbox for MATLAB. This toolbox includes functions for Probability distributions,
Parameter estimations, Descriptive Statistics, Multivariate statistics, Linear and nonlinear mod-
eling, Statistical plotting, Statistical Process Control, Design of Experiments, Hypothesis Tests,
Cluster Analysis. See help stats.

1.1 Descriptive statistics

1.1.1 Numerical description

We can define this simple function to compute the mean value of the elements of a vector.

function xbar = mean1(x)
% For a vector x, mean1(x) returns the mean of x.
n = length(x);
xbar = x(1);
for i = 2:n

xbar = xbar + x(i);
end
xbar = xbar/n;

Now, you can type the following statement to see how this function works:

>> x = rand(1000,1);
>> m = mean1(x)

The mean of x given by m should be close to 0.5.
Alternatively, we could have make use of the sum command to avoid including a for loop:

function xbar = mean2(x)
% For a vector x, mean1(x) returns the mean of x..
n = length(x);
xbar = sum(x);
xbar = xbar/n;

Observe that the function mean2 (unlike mean1) can also be applied to matrices where each column
is a sample of data from a different variable. For matrices, mean2(x) is a row vector containing the
mean value of each column.

We can construct a function to compute simultaneously the sample mean, x̄, standard deviation,
s, skewness, SK, and kurtosis, K, for each column of a matrix where,

x̄ =

nP
i=1

xi

n
, s =

vuuut nP
i=1
(xi − x̄)2

n
, SK =

nP
i=1
(xi − x̄)3

ns3
, K =

nP
i=1
(xi − x̄)3

ns4
.

function [xbar,s,SK,K] = statistics(X)
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% X is a matrix whose columns are sample
% of data from a certain variable.
% xbar = sample mean
% s = standard deviation
% SK = skewness
% K = kurtosis
[n,m] = size(X);
xbar = sum(X)/n;
X = X - ones(n,1)*xbar;
s = sqrt(sum(X.^2)/n);
SK = sum(X.^3)./(n*s.^3);
K = sum(X.^4)./(n*s.^4);

An example to make use of the function statistics can be the following:

>> X=randn(8);
>> [xbar,s,SK,K] = statistics(X)

As we will see in next section, the Statistics toolbox of MATLAB supplies specific functions to
compute all these characteristics and many more. For example, you can test your previous results
with the following commands:

>> mean(X)
>> std(X,1)
>> skewness(X)
>> kurtosis(X)

1.1.2 Descriptive statistics with the Statistics Toolbox of MATLAB

Some of the functions to compute the most frequent statistics are the following:

mean(x) % Mean value of the elements in x.
median(x) % Median value of the elements in x.
std(x),var(x) % Standard deviation and variance of x normalized by n− 1.
std(x,1),var(x,1) % Standard deviation and variance of x normalized by n.
range(x) % Range of x.
iqr(x) % Interquartile range of x.
mad(x) % Mean absolute deviation of x.
max(x),min(x) % Maximum and minimum element of x.
skewness(x),kurtosis(x) % Skewness and kurtosis of x.
moment(x,order) % Central moment of x specified by order.
prctile(x,p) % pth percentile of x (if p=50, returns the median of x)

Observe that if x is a matrix, then the result of these functions is a row vector containing the
statistic for each column of x.

Other two interesting functions are cov and corrcoef. For vectors, the command cov returns
the variance:

>> x=rand(100,1);cov(x)
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For matrices, where each row is an observation, and each column a variable, returns the covariance
matrix:

>> x=rand(100,5); cov(x)

For two vectors, z and w, of equal length, cov(z,t) returns a matrix with the variances of z and
w in the diagonal and the covariance of z and w in the two off-diagonal entries.

>> z=rand(100,1);t=rand(100,1);cov(z,t)

Observe that cov(z,t)=cov([z t]). For two matrices, cov(X,Y)=cov(X(:),Y(:)). Finally,
cov(x) or cov(x,y) normalizes by (n− 1) and cov(x,1) or cov(x,y,1) normalizes by n, where n
is the number of observations.

The corrcoef(X) command calculates a matrix of correlation coefficients for an array X, in
which each row is an observation and each column is a variable. Observe that corrcoef(X,Y),
where X and Y are column vectors, is the same as corrcoef([X Y]).

>> corrcoef(x)

The Statistics Toolbox and some built-in functions of MATLAB allows to plot a number of
useful graphics in descriptive statistics.

hist(x) % Histogram.
boxplot(x) % Boxplots of a data matrix (one per column).
cdfplot(x) % Plot of empirical cumulative distribution function.
normplot(x) % Normal probability plot (one per column).
qqplot(x,y) % Quantile-Quantile plot.

You can change the way any toolbox function works by copying and renaming the M-file, then
modifying your copy. You can also extend the toolbox by adding your own M-files.

For example, imagine we are interested in plotting a variant of the histogram where the counts
are replaced by the normalized counts, that is, the relative histogram. By normalized count, we
mean the count in a class divided by the total number of observation times the class width. For
this normalization, the area (or integral) under the histogram is equal to one. Now, we can look
for the file hist.m and modify it. This file is usually in the following path (or something similar):

c:\MATLAB6p5\toolbox\matlab\datafun
Open it and let’s try to change it. Observe that the hist command produces a histogram bar

plot if there is no output arguments, that is, we look for the sentences:

if nargout == 0
bar(x,nn,’hist’);
...

The sentence bar(x,nn,’hist’) draws the values of the vector nn (frequency) as a group of vertical
bars whose midpoints are the values of x, see help bar. For example, we can change the previous
sentences by the following ones to obtain a white normalized histogram:

if nargout == 0
bar(x,nn/(length(y)*(x(2)-x(1))),’hist’,’w’);
...

You can also change the help section including for example a sentence like this:

% HIST(...) without output arguments produces a normalized histogram bar
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% plot of the results.

and now, save the changed file as histn.m, for example. If you want histn to be a global function,

you can save it in the same folder hist.m was. Otherwise, you can save it in a different folder and
then histn will only work if you are in this directory or if you add it to the MATLAB’s search
path, (see path).

1.2 Probability distributions

1.2.1 Random variables

Obviously, we can construct function files to evaluate the probability distribution of a specific
random variable. For example, we can create an M-file to compute the Binomial probability density
function given by,

f (x) =
¡
n

x

¢
px (1− p)n−x , x = 1, 2, ..., n

with the following function:

function y = binomialpdf(x, n, p)
y =(gamma(n+1) * (p.^x) .* ((1-p).^(n-x))) ./ (gamma(x+1) .* gamma(n-x+1));

Observe that we can apply this function either to vectors or matrices. In these cases, it is recom-
mended to make use of the logarithm of the gamma function to avoid numerical errors. This is
defined with the gammaln function. Then, an alternative to the previous function could be:

function y = binomialpdf(x, n, p)
y = (gammaln(n+1) + x*log(p) + (n-x)*log(1-p) - gammaln(x+1) - gammaln(n-x+1));
y =exp(y);

To analyze the performance of these functions, let p a constant parameter and let vary the values
for n considering the probability density functions of Bin(5, 0.2), Bin(10, 0.2) and Bin(20, 0.2).

>> x5 = 0:5;
>> y5 = binomialpdf(x5, 5, 0.2);
>> x10 = 0:10;
>> y10 = binomialpdf(x10, 10, 0.2);
>> x20 = 0:20;
>> y20 = binomialpdf(x20, 20, 0.2);
>> plot(x5, y5, ’.’, x10, y10, ’+’, x20, y20, ’*’);
>> legend(’n = 5 , p = 0.2’ , ’n = 10 , p = 0.2’ , ’n = 20 , p = 0.2’);

Now, let’s consider different values for p and let constant the value of n considering the proba-
bility density functions of Bin(100, 0.1), Bin(100, 0.5) and Bin(100, 0.8).

>> x = 0:100;
>> y1 = binomialpdf(x, 100, 0.1);
>> y2 = binomialpdf(x, 100, 0.5);
>> y3 = binomialpdf(x, 100, 0.8);
>> plot(x, y1, ’.’, x, y2, ’+’, x, y3, ’*’);
>> legend(’n = 100 , p = 0.1’ , ’n = 100 , p = 0.5’ , ’n = 100 , p = 0.8’);
We can also construct a function to generate m random numbers from a Binomial distribution

with parameters n and p:
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function y = binomialrnd(m, n, p)
prob = rand(n, m) ;
successes = prob < p ;
y = sum(successes);

and we can try this function with:

>> y10 = binomialrnd(10, 100, 0.1);
>> mean(y10);
>> var(y10);
>> y100 = binomialrnd(100, 100, 0.1);
>> mean(y100);
>> var(y100);

1.2.2 Probability distributions with the Statistics Toolbox of MATLAB.

For a large number of distributions, the Statistics Toolbox provides five functions to provide the
Probability Density Function (pdf), the Cumulative Distribution Function (cdf), the Inverse Cu-
mulative Distribution Function, a Random Number Generator and the Mean and Variance as a
Function of Parameters.

• Probability Density Function (pdf)
The pdf function call has the same general format for every distribution in the Statistics
Toolbox. The following commands illustrate how to call the pdf for the normal distribution.
See help normpdf.

>> x = [-3:0.1:3];

>> f = normpdf(x,0,1);

The variable f contains the density of the normal pdf with parameters µ = 0 and σ = 1 at
the values in x. The first input argument of every pdf is the set of values for which you want
to evaluate the density. Other arguments contain as many parameters as are necessary to
define the distribution uniquely. The normal distribution requires two parameters; a location
parameter (the mean, µ) and a scale parameter (the standard deviation, σ).

• Cumulative Distribution Function (cdf)
The cdf function call has the same general format for every distribution in the Statistics
Toolbox. The following commands illustrate how to call the cdf for the normal distribution.
See help normcdf.

>> x = [-3:0.1:3];

>> p = normcdf(x,0,1);

The variable p contains the probabilities associated with the normal cdf with parameters
µ = 0 and σ = 1 at the values in x. The first input argument of every cdf is the set of values
for which you want to evaluate the probability. Other arguments contain as many parameters
as are necessary to define the distribution uniquely.
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• Inverse Cumulative Distribution Function
The inverse cumulative distribution function returns critical values for hypothesis testing
given significance probabilities. To understand the relationship between a continuous cdf and
its inverse function, try the following:

>> x = [-3:0.1:3];

>> xnew = norminv(normcdf(x,0,1),0,1);

How does xnew compare with x? Conversely, try this:

>> p = [0.1:0.1:0.9];

>> pnew = normcdf(norminv(p,0,1),0,1);

How does pnew compare with p?

Calculating the cdf of values in the domain of a continuous distribution returns probabilities
between zero and one. Applying the inverse cdf to these probabilities yields the original
values. See help norminv.

• Random Number Generator

You can generate random numbers from each distribution. This function provides a single
random number or a matrix of random numbers, depending on the arguments you specify
in the function call. The following command generate a random number from the normal
distribution with parameters µ = 0 and σ = 1.

>> x=normrnd(0,1)

Alternatively, normrnd(0,1,M,N) returns an M by N matrix of random numbers generated
from a N (0, 1) . See help normrnd.

• Mean and Variance as a Function of Parameters.
The mean and variance of a probability distribution are generally simple functions of the
parameters of the distribution. The Statistics Toolbox functions ending in "stat" all produce
the mean and variance of the desired distribution for the given parameters. For example, the
following command,

>> [m,v] = normstat(0,1)
returns the mean and variance of the normal distribution with parameters µ = 0 and σ = 1.
See help normstat.

There are a large number of functions to evaluate the Probability Density Function (pdf), the
Cumulative Distribution Function (cdf), the Inverse Cumulative Distribution Function, a Random
Number Generator and the Mean and Variance as a Function of Parameters of many other distri-
butions than the normal distribution. This can be done replacing the term "norm" by one of the
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following terms. See lookfor distribution.

beta: Beta distribution
bino: Binomial distribution
chi2: Chi-Square distribution
exp: Exponential distribution
f: F distribution
gam: Gamma distribution
geo: Geometric distribution
hyge: Hypergeometric distribution

logn: Lognormal distribution
mvn: Multivariate normal distribution
mvt: Multivariate t distribution
nbin: Negative binomial
poiss: Poisson cumulative distribution
unid: Uniform (discrete) distribution
unif: Uniform (continuous) distribution
weib: Weibull distribution

Type randtool for a random sample generation demo.

1.3 Multiple linear regression

1.3.1 Programming functions

We consider the multiple linear regression model,

Y = Xβ + ε,

where ε ∼ N
¡
0, σ2In

¢
and Y is an n×1 vector of observations, X is an n×k matrix of regressors,

β is a n×1 vector of parameters and ε is an n×1 vector of random disturbances. The least squares
estimator of β is given by,

β̂ =
¡
X0X

¢−1
X0Y,

whose variance is,
V ar

³
β̂
´
= σ2

¡
X0X

¢−1
the predicted values are given by,

Ŷ = Xβ,

the residuals are,
e = Y − Ŷ,

and the residual variance is,

s2R =

P
e2
i

n− k − 1 .
We can now define the following function to solve the regression problem:

function [beta,Var_beta,ypred,sR2] = regres(X,Y)
% X = matrix of regressors with a column of ones.
% Y = vector of data from the dependent variable.
% beta = vector of regression coefficients.
% Var_beta = The variance covariance matrix of beta.
% ypred = predicted values for Y.
% sR2 = residual variance.
[n,k] = size(X);
k = k - 1;
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beta = (X’*X)\(X’*Y);
ypred = X*beta;
resid = Y - ypred;
sR2 = sum(resid.^2)/(n - k - 1);
Var_beta = sR2*inv(X’*X);

We can test this function with the following commands:

>> n = 50; k = 4;
>> X = randn(n,k);
>> b = [0;1;0;1];
>> y = X*b + randn(n,1);
>> X = [ones(n,1) X];
>> [beta,Var_beta,ypred,sR2] = regres(X,y);
>> resid = y - ypred;
>> subplot(2,1,1),plot(resid,’o’),title(’residuals versus row number’)
>> subplot(2,1,2),plot(resid,ypred,’o’),title(’residuals versus predicted’)

1.3.2 Multiple linear regression with the Statistics Toolbox of MATLAB

The Statistics Toolbox provide the regress function to address the multiple linear regression
problem. regress uses QR decomposition of X followed by the backslash operator to compute β̂.
The QR decomposition is not necessary for computing β̂, but the matrix R is useful for computing
confidence intervals.

b = regress(y,X) returns the least squares estimator β̂.
[b,bint,r,rint,stats] = regress(y,X) returns an estimate of β in b, a 95% confidence

interval for β in the k×2 array bint. The residuals are returned in r and a 95% confidence interval
for each residual is returned in the n × 2 array rint. The vector stats contains the R2 statistic
along with the F and p values for the regression.

[b,bint,r,rint,stats] = regress(y,X,alpha) gives 100(1 - alpha)% confidence intervals
for bint and rint. For example, alpha = 0.2 gives 80% confidence intervals.

Let’s see an example. Suppose the true model is,

Y = X

µ
10
1

¶
+ ε, ε ∼ N (0, 0.01I) ,

where I is the identity matrix. Suppose we have the following data:

>> X = [ones(10,1) (1:10)’]
>> y = X * [10;1] + normrnd(0,0.1,10,1)

Then,

>> [b,bint] = regress(y,X,0.05)

Compare b to [10 1]’. Note that bint includes the true model values.

Another example comes from Chatterjee and Hadi (1986) in a paper on regression diagnostics.
The data set (originally from Moore (1975)) has five predictor variables and one response.

>> load moore
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>> X = [ones(size(moore,1),1) moore(:,1:5)];

Matrix X has a column of ones, and then one column of values for each of the five predictor
variables. The column of ones is necessary for estimating the y-intercept of the linear model.

>> y = moore(:,6);
>> [b,bint,r,rint,stats] = regress(y,X);

The y-intercept is b(1), which corresponds to the column index of the column of ones.

>> stats
stats =
0.8107 11.9886 0.0001

The elements of the vector stats are the regression R2 statistic, the F statistic (for the hypothesis
test that all the regression coefficients are zero), and the p-value associated with this F statistic.

R2 is 0.8107 indicating the model accounts for over 80% of the variability in the observations.
The F statistic of about 12 and its p-value of 0.0001 indicate that it is highly unlikely that all of
the regression coefficients are zero.

>> rcoplot(r,rint)

The plot shows the residuals plotted in case order (by row). The 95% confidence intervals about
these residuals are plotted as error bars. The first observation is an outlier since its error bar does
not cross the zero reference line.

1.4 Stochastic processes

In this section, we will simulate and represent graphically various simple stochastic processes.

1.4.1 Bernoulli process

A Bernoulli process is a discrete-time stochastic process consisting of finite or infinite sequence of
independent random variables X1,X2,X3, ... such that,

Xi =

½
1, with prob = p,
−1, with prob = 1− p.

Random variables associated with the Bernoulli process include:
- The number of successes in the first n trials; this has a binomial distribution;
- The number of trials needed to get r successes; this has a negative binomial distribution.
- The number of trials needed to get one success; this has a geometric distribution, which is a

special case of the negative binomial distribution.
We can simulate a realization of size 100 of a Bernoulli process with p = 0.5 as follows.

>> u=rand(100,1);
>> X(u<0.5)=1;X(u>0.5)=-1;

We could also have written:

X=1-2*floor(u*2);

or:

X=2*(u<0.5)-1;
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We can simulate another realization of a Bernoulli process with p = 0.25 and observe the
differences.

>> u=rand(100,1);
>> Y(u<0.25)=1;Y(u>0.25)=-1;
>> plot(1:100,X,’ro’,1:100,Y,’k*’)

1.4.2 Random walk

By using the cumsum command, we can simulate random walks from the Bernoulli processes simu-
lated previously.

>> plot(1:100,cumsum(X),’r’,1:100,cumsum(Y),’k’)

1.4.3 Poisson process

Firstly, observe that continuous time processes are only possible to simulate by discretization of
the unit time.

A Poisson process, Xt, with rate λ verifies the following property:

Xt = Number of occurrences in [0, t) ∼ Po (λt) .

If we want simulate a realization with 10 ocurrences from a Poisson process of rate λ = 2, we
can first simulate 10 exponential times of mean 1/λ = 0.5 between occurrences.

>> x=exprnd(0.5,1,10);

Then, we can obtain the occurrence times as follows.

>> x=cumsum(x);
>> subplot(2,1,1),plot(x,zeros(length(x)),’.’)

Suppose we want to know the value of the process Xt at the following instant times:

>> t=0:0.1:ceil(x(end));

Then, we can compute:

>> for i=1:length(t);X(i)=sum(x<t(i));end
>> subplot(2,1,2),plot(t,X)

1.4.4 Autoregressive process

Suppose we want to simulate T = 100 values from an autoregressive model AR(1),

xt = αxt + et,

where et are i.i.d. N (0, 1) and assume three values for α ∈ {0.8, 0.5,−0.8}.
One possibility is to assume x1 = e1 and then obtain recursively the remaining values.

>> e=randn(100,1);
>> x=zeros(100,1);
>> x(1)=e(1);
>> alpha=0.8;
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>> for i=2:100, x(i)=alpha*x(i-1)+e(i); end

Alternatively, we could simulate a realization of size T = 200 and then, consider the last 100
values.

We can calculate the sample coefficient of the autocorrelation function. For example, the first
coefficient is the sample correlation coefficient of xt−1 and xt:

>> corrcoef(x(1:99),x(2:100));
>> plot(x(1:99),x(2:100),’.’)

Observe that after 10 lags, there is almost no relation between xt−10 and xt.

>> plot(x(1:90),x(11:100),’.’)

1.4.5 Moving average process.

Suppose now that we want to simulate T = 100 values from a moving average model MA(1),

xt = θet−1 + et,

where et are i.i.d. N (0, 1) and assume three values for α ∈ {0.8, 0,−0.8}.
This process is easier to initialize because we just have to simulate e0.

>> e=randn(101,1);
>> theta=0.8;
>> x=theta*e(1:100,1)+e(2:101,1);

Compute the first two coefficients of the autocorrelation function and observe the following
plots:

>> plot(x(1:99),x(2:100),’.’)
>> plot(x(1:98),x(3:100),’.’)

1.5 Monte Carlo simulation of known results

Frequently, in statistics, the results are shown by simulation. The idea of Monte Carlo simulation
is to generate samples from a distribution by using a computer. This technique is very useful, in
special when there is not a closed expression for the results we want to obtain. In this section, we
will simulate some known results in statistics.

1.5.1 Central limit theorem

We generate 1000 samples of size 50 from an exponential distribution with mean λ−1 = 2:
>> E=exprnd(2,50,1000);

Columns represent different samples. We define a row vector containing the mean value of each
column. Then, we plot a histogram of this mean values, what do you expect to see?

>> m=mean(E);
>> hist(m)

Taking into account that the mean of the exponential distribution is µ = λ−1 = 2 and the
variance is σ2 = λ−2 = 4, which values do you expect for the sample mean and variance of m?

>> mean(m)
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>> var(m)
Finally, compute the sample mean of the variances obtained for each sample, what result do

you expect?

>> v=var(E);
>> mean(v)

1.5.2 Some properties of a random sample from a normal population

We will show by simulation the following properties of the normal distribution. Given a random
sample X1,X2, ...,Xn from a normal population N (µ,σ) and let X̄ = 1

n

P
n

i=1Xi the sample mean,
and let S2 = 1

n−1
£
1
n

P
n

i=1X
2
i
− nX̄

¤
the sample variance, it can be shown that:

1. X̄ ∼ N
³
µ, σ√

n

´
2. (n−1)S

2

σ2
∼ χn−1

3. X̄ and S2 are independent.

We generate 100 samples of size n = 10 from an normal distribution, N (µ = 5, σ = 2) .

>> mu=5;sigma=2;n=10;
>> N=normrnd(mu,sigma,n,100);

And compute the mean and variance of each column which represent a different sample.

>> xbar=mean(N);
>> S2=var(N);

Property 1:

>> mean(xbar)
>> std(xbar)
>> histn(xbar)
>> hold on;
>> x=2.5:.01:7.5;plot(x,normpdf(x,mu,sigma/sqrt(n)))

Property 2:

>> mean(S2)
>> chi=(n-1)*S2/sigma^2;
>> histn(chi)
>> hold on;
>> x=0:.1:30;plot(x,chi2pdf(x,n-1))

Property 3:

>> plot(xbar, S2,’.’)
>> corrcoef(xbar, S2)
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1.6 Optimization: Newton-Raphson method to obtain maximum likelihood es-
timators

Given a sample of data, x1, ..., xn, i.i.d. from a common distribution f (x | θ) , the maximum
likelihood estimator of θ is the value (or vector of values) that maximizes the likelihood function,

likelihood = f (θ | x1, ..., xn) ,

where f is the joint density function of the sample as a function of the parameters θ.
A necessary condition for θ̂ to maximize f is that,

∇θf
³
θ̂
´
= 0,

which, in general, is a non linear system of equations where it is difficult to obtain the value of θ̂.
Thus, it can be useful to consider numerical methods to approximate its value.

Newton-Raphson method is frequently used to maximize/minimize functions. The Newton-
Raphson method uses the following iterative process to maximize the function f (x) defined on
x ∈ Rn,

xk+1 = xk −H−1
k

gk,

where gkand Hk are the gradient and the Hessian matrix of f evaluated at xk and x0 is a value
close to the optimum. This iteration process finishes when gk is approximately equal to 0.

We will consider this algorithm to estimate the parameters of a Weibull distribution. We need
first the extreme value distribution. In the following program, the logarithm of the likelihood, the
gradient and the Hessian of an extreme value distribution. See help weibfit.

function [z,grad,H] = LogVerEV(param,X,r)
% Logarithm of the likelihood function of an Extreme
% Value distribution with parameters param=(u,b)
% X = data sample where the first r observations are complete
% z = Logarithm of the likelihood function.
% grad = gradient vector
% H = Hessian matrix
n = length(X);
u = param(1);
b = param(2);
Y = X(1:r);
s1 = sum((Y - u)./b);
s2 = sum(exp((X - u)./b));
z = -r*log(b) + s1 - s2;
grad = zeros(2,1);
grad(1) = -r/b + s2/b;
s3 = sum(((X - u)./b).*(exp((X - u)./b)));
grad(2) = -r/b - s1/b + s3/b;
H = zeros(2,2);
H(1,1) = -s2/(b‹2);
s4 = sum((((X - u)./(b‹2)).‹2).*(exp((X - u)./b)));

14



H(2,2) = r/(b‹2) + 2*s1/(b‹2) - 2*s3/(b‹2) - s4;
H(2,1) = r/(b‹2) - s2/(b‹2) - s3/(b‹2);
H(1,2) = H(2,1);

Now, we can make use of the Newton-Raphson method to estimate the parameters of an Extreme
Value and finally, we apply the corresponding transformation of the parameters to obtain the
maximum likelihood estimators of the parameters of a Weibull distribution.

clear
clf
% We generate 50 samples of size 300 from a
% Weibull distribution (alpha = 2, beta = 0.5) and
% the last 60 observation are censored
n = 300;
r = 240;
rand(’seed’,sum(100*clock));
alpha = 2;
beta = 0.5;
X = weibull(alpha,beta,n);
if any(X==0)==1,
I = find(X==0);
X(I) = eps*ones(length(I),1);
end
X = sort(X);
X(r+1:n) = ones(n-r,1)*X(r);
Y = log(X);
param = [0.6,1.5]’; % punto inicial
[z,grad,H] = LogVerEV(param,Y,r);
while grad > 1e-4,
param = param - inv(H)*grad;
[z,grad,H] = logVerEV(param,Y,r);
end
alpha = exp(param(1));
beta = 1/param(2);
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