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o Nonstationary series — the frequency domain is essential.

e There are several works on classification methods from
both domains.
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INTRODUCTION

e Time series can be studied from both time and
frequency domains.
e Short stationary series —» the usual multivariate
techniques could be applied.
e Long stationary series — a frequency domain approach is
more appropriate.
o Nonstationary series — the frequency domain is essential.

e There are several works on classification methods from
both domains.

e Most authors have studied the classification of stationary
time series.
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Casado, Sara Classification of Stationary Series
Lépez-Pintado
and Juan e Pulli (1996) considers the ratio of spectra.
e Kakizawa, Shumway and Taniguchi (1998) discriminate
multivariate time series with the Kullback-Leibler's and the

Chernoff’s information measures.

Introduction
The Mett

Classification of Nonstationary Series

e Ombao et al. (2001) introduce the SLEX spectrum for a
nonstationary random process.

e Caiado et al. (2006): define a measure, based on the
periodogram, for both clustering and classifying stationary
and nonstationary time series.
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Casado, Sara
Lépez-Pintado

and Juan e Priestley (1965) introduces the concept of a Cramér
representation with time-varying transfer function.

Introduction +’7T .
o Xi= [ eMaqnde

e Dahlhaus (1996) establishes an asymptotic framework for
locally stationary processes.

X =u(£)+ [ A )de)
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CONTEXT

o The Problem. Classification of time series: (x;) is a
new series we want to classify in one of K different

populations.

o The Way. We transform the time series problem into a
functional data question.
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Pl o The Problem. Classification of time series: (x;) is a
L iEee new series we want to classify in one of K different
Romo populations.
o e The Way. We transform the time series problem into a
The Method functional data question.
Results
o The Tools
Functional Data: Each element is a real function x(t),
tel CR.

Depth: The “centrality” or “outlyingness” of an
observation within a set of data. It provides a criterion to
order data from center-outward.
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FuNCcTIONAL DATA

Let (x¢) = (x1,...,x7) be a time series, the periodogram and
its cumulative version, the integrated periodogram, are:

T 2
1
IT()\J):Z]TiT er it s AJGS
t=-+1

where

is the Fourier set of frequencies.
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CLASSIFICATION CRITERION

A new function x is assigned to the group minimizing its
distance to a reference function R of the group.

e The reference function: The mean

R (t) = 1 Nzxe

e The distance: The distance

XlaXZ /|X1 - ’dt Xk € El(/), k =

Remark: Our functional data belong to £(/)

1,2
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e The proportion of bands containing the graph of y is
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e This depth is defined, for 2 < J < N, as

BDw, s (x(1)=3"7_, BDY (x(t))
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DeEPTH

The Band Depth

e The proportion of bands containing the graph of y is

BDP(0)=(}) " Cicey cepe...ceyan HEO(BICBxer (€),ixgs ()}

e This depth is defined, for 2 < J < N, as

BDw, s (x(1)=3"7_, BDY (x(t))

Population versions:

BDU)(X)=P{G(X)CB(Xey ..., xe;)}

BD,(X)=3_;_, BDU=3"]_, P{G(X)CB(Xey ..., e;)}
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DeEPTH

The Modified Band Depth

e By taking the Lebesgue measure —instead of I— of
AQGXiy X )={tE€ab] | mine—jy i xr(£)<x(t)<maxy—jy i, xr(t)},

MBDY (AN =) Cicey cepe...ceyn vr(AG(E)ixer (£)xg; (1))

e The modified (generalized) band depth is defined as

MBDy,(x(1)=57_, MBD) (x(t))
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DeEPTH

The Modified Band Depth

e By taking the Lebesgue measure —instead of I— of
AQGXiy X )={tE€ab] | mine—jy i xr(£)<x(t)<maxy—jy i, xr(t)},

MBDY (AN =) Cicey cepe...ceyn vr(AG(E)ixer (£)xg; (1))

e The modified (generalized) band depth is defined as

MBDy,(x(1)=57_, MBD) (x(t))

Population versions:
MBDV) (X)=E (V,(A(X;Xel ,...,Xej)))

MBD,(X)=Y7_, MBDV(X)=3"1, E(ur(A(X;Xel ,...,Xej)))
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ADDING ROBUSTNESS

1. Our method depends on the group reference curve.

2. The mean function of a set of functions is not robust.
3. Robustness can be added to the process through the
reference curve.

4

We shall consider the a-trimmed mean, where only the
deepest elements are averaged:

n—[na]

RO(t) =X () = [na] > ol

with [] being the integer part function.
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ALGORITHMS 1 AND 2

Consider the samples (x;)%, e =1,...,n, for k =1,2.

@ For each series (x;)%, if F§%()\) is the integrated
periodogram of the g-th block, we construct the
function x(X) = (F'J(\) ... FE), (X)) so that the
functional data are {x"(\)}, e=1,...,n, for k =1,2
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ALGORITHMS 1 AND 2

Consider the samples (x;)%, e =1,...,n, for k =1,2.

@ For each series (x;)%, if F§%()\) is the integrated
periodogram of the g-th block, we construct the
function x(X) = (F'J(\) ... FE), (X)) so that the
functional data are {xV(\)}, e=1,...,n, for k =1,2

® For both populations the group reference function is
calculated: R(A)™ = x®(A), in algorithm 1, or

[e3

R(AN)® =x W(N), in algorithm 2, k =1,2
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Alonso, Davia Consider the samples (x;)¥, e =1,..., ny for k = 1,2.
Casado, Sara
Lépez-Pintado

and Juan @ For each series (x;)%, if F§%()\) is the integrated
periodogram of the g-th block, we construct the
function x(X) = (F'J(\) ... FE), (X)) so that the
o functional data are {xV(\)}, e=1,...,n, for k =1,2

Robustness
Results

® For both populations the group reference function is
calculated: R(A)™ = x®(A), in algorithm 1, or

[e3

R(AN)® =x W(N), in algorithm 2, k =1,2
©® A new series (x;) is classified in

k=1 if d(x(A), R(N)P) < d(x(1), R(N)?)

k=2 otherwise
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THE SLEXBC METHOD

Using the SLEX (smooth localized complex exponential) model
of a nonstationary random process, Huang et al. (2004)
propose a classification method (SLEXbC).

We compare our algorithms with this method.

How SLEXbC works

@ It finds a basis from the SLEX library that can best detect
the differences.

@ It assigns to the class minimizing the Kullback-Leibler
divergence between the SLEX spectra.
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SIMULATIONS

Let (x)% be the e-th series of the k-th population; let e ~ N(0, 1) be

Gaussian noise.
Simulation 1. Series are stationary
1 1 1
XP=oXP +e t=1,...,T
X =P t=1,...
Training data sets sizes: n = 8 series of length T = 1024.

Testing data sets sizes: n = 10 series of length T = 1024.
Six comparisons: Values ¢ = —0.5, —0.3, —0.1, +0.1, +0.3 and +0.5.

Runs: 1000.
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SIMULATIONS

Contamination 1
MA(¢) instead of AR(¢) (with the same parameter value).

Contamination 2
¢ = —0.9 instead of the correct value ¢ (with the correct
model).

Contamination 3
¢ = +0.9 instead of the correct value ¢ (with the correct
model).

We always contaminate one series of the population P®.
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Table: Simulation 1 with and without contamination

$p=-03 ¢=-01 ¢6=+401 ¢ =403
DbC 0.000 0.063 0.060 0.000
DbC-« 0.000 0.065 0.062 0.000
SLEXbC 0.000 0.131 0.127 0.000
DbC 0.000 0.077 0.074 0.000
DbC-« 0.000 0.064 0.062 0.000
SLEXbC 0.000 0.175 0.172 0.000
DbC 0.000 0.300 0.513 0.001
DbC-« 0.000 0.065 0.062 0.000
SLEXbC 0.001 0.377 0.491 0.002
DbC 0.001 0.512 0.300 0.000
DbC-« 0.000 0.064 0.062 0.000
SLEXbC 0.002 0.490 0.377 0.001
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SIMULATIONS

Let (x)% be the e-th series of the k-th population; let e ~ N(0, 1) be

Gaussian noise.

Simulation 2. Series are made of stationary blocks

Xt(l)ZG(tl) if t:17-~'7T/2
X =—01X +¢) if t=T/2+1,...,T

X = P if t=1,...,T/2
Xt(z):Jro.lXt(zi)lJre(f) if t=T/2+1,...,T

Training data sets sizes: n =8 and 16; T = 512, 1024 and 2048.
Testing data sets sizes: n = 10; T = 512, 1024 and 2048.

Runs: 1000.
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SIMULATIONS

Contamination 1
MA(¢) instead of AR(¢) (with the same parameter value).

Contamination 2
¢ = —0.9 instead of the correct value ¢ (with the correct
model).

Contamination 3
¢ = +0.9 instead of the correct value ¢ (with the correct
model).

We always contaminate one series of the population P®.
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Andrés M. Table: Simulation 2 without contamination

Alonso, David

Casado, Sara

Lopez-Pintado 8x512 16x512 8x1024 16x1024 8x2048 16x2048

and Juan

Romo DbC 1 0.141 0.131 0.062 0.060 0.014 0.014

2 0.066 0.061 0.015 0.014 0.001 0.001

4 0.078 0.069 0.015 0.014 0.001 0.001

ntreduction 8 0.090 0.080 0.020 0.018 0.002  0.001

The Method

Hobustnes: DbC-«1 0.143 0.132 0.063 0.061 0.015 0.014

et 2 0069 0.064 0016 0015 0.001 0.001

4 0.083 0.073 0.017 0.016 0.002 0.001

8 0.105 0.088 0.024 0.019 0.002 0.002

SLEXbC 0.114 0.086 0.038 0.025 0.007  0.003
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Andrés M. Table: Simulation exercise 2, sizes 8x512
Alonso, David
Casado, Sara

'-"’Fa’:z"jil";sd° Without contam. Contam. 1 Contam. 2 Contam. 3
Romo DbC 1 0.141 0.143 0.258 0.457
2 0.066 0.070 0.135 0.147
4 0.078 0.083 0.137 0.187
Intrduction 8 0.090 0.102 0.143 0.225
s DbC-a 1 0.143 0.145 0.145 0.145
2 0.069 0.072 0.070 0.073
4 0.083 0.086 0.081 0.083
8 0.105 0.114 0.104 0.108

SLEXbC 0.114 0.128 0.239 0.376
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Alonso, David Let (xt)(ek) be the e-th series of the k-th population; let ¢; ~ N(0, 1) be
Casado, Sara . .
Lépez-Pintado Gaussian noise.
and Juan
Romo

Simulation 3. Series are not stationary
If at.; = 0.8 [1 — 7 cos(mwt/1024)], then

Introduction
The Method

Robustness Xél) = aso. 5X 21— 0. 81Xt1)2 + et t = 1, ceey T

Results

X? = ap X, — 0.81X2, + € t=1,...,T

Training and testing data sets sizes: n = 10; T = 1024.
Three comparisons: 7 values 0.4, 0.3 and 0.2.
Runs: 1000.
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SIMULATIONS

Contamination 1: 7 = 40.2 instead of 7 = +0.5.
Contamination 2: 7 = —0.9 instead of the correct value 7.
Contamination 3: 7 = 4+0.9 instead of the correct value 7.

We always contaminate one series of the population P,

Time-varying coefficients

L L L L L
o 100 200 300 200 500 500 700 800 500 000
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Time-varying integrated periodograms for class t = 0.5 and contamination t=0.9
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e
Series Table: Simulation 3 without contamination
Alonso, David
Y 7=04 7=03 7=0.2
e DbC 1 0.218 0.063 0.019
2 0.119 0.006 0.000
e 4 0.101 0.002 0.000
O 8 0.123 0.003 0.000
Results DbC-a 1 0.226 0.065 0.021
2 0.128 0.006 0.000
4 0.112 0.002 0.000
8 0.139 0.004 0.000

SLEXbC 0.181 0.011 0.000
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Andrés M. Table: Simulation 3, 7 = 0.4

Alonso, David
Casado, Sara

L"’z:z"jil";sd" Without contam. Contam. 1  Contam. 2 Contam. 3
Romo DbC 1 0.218 0.232 0.254 0.257
2 0.119 0.143 0.500 0.153
4 0.101 0.144 0.500 0.128
Intoduction 8 0123 0177 0.499 0132
S DbCa 1 0.226 0.241 0.231 0.234
2 0.128 0.131 0.128 0.125
4 0.112 0.121 0.113 0.114
8 0.139 0.150 0.141 0.138

SLEXbC 0.181 0.234 0.492 0.173
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REAL DATA

We have evaluated our proposal in a benchmark data set
containing 8 explosions, 8 earthquakes and 1 extra
series—known as NZ event—not classified (but being an
earthquake or an explosion). Each series has two parts: the
first half is the part P, and the second half is S.
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Exercise 1

Group 1 = { 8 earthquakes }
Group 2 = { 8 explosions }
NZ event
e Applying leave-one-out cross validation, both of our

algorithms misclassify only the first series of the
group 2 (explosions).
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REAL DATA

Exercise 1

Group 1 = { 8 earthquakes }
Group 2 = { 8 explosions }
NZ event

e Applying leave-one-out cross validation, both of our
algorithms misclassify only the first series of the
group 2 (explosions).

e Respecting the NZ event, both algorithms agree on
assigning it to the explosions group, as, for example,
Kakizawa et al. (1998) and Huang et al. (2004).
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Exercise 2
Group 1 = { 8 earthquakes + NZ event }
Group 2 = { 8 explosions }

We can consider that a atypical observation is presented in group 1.
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REAL DATA

Exercise 2

Group 1 = { 8 earthquakes + NZ event }

Group 2 = { 8 explosions }

We can consider that a atypical observation is presented in group 1.

e In this situation, algorithm 1 misclassifies the first and
third elements of group 2 (explosions), not only the first.
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REAL DATA

Exercise 2

Group 1 = { 8 earthquakes + NZ event }
Group 2 = { 8 explosions }
We can consider that a atypical observation is presented in group 1.
e In this situation, algorithm 1 misclassifies the first and

third elements of group 2 (explosions), not only the first.

e But again algorithm 2 misclassifies only the first
series of group 2. This illustrates the robustness of our
second algorithm.
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Table: Misclassified series

Exercise 1

Exercise 2

DbC
DbC-«a

Explosion 1
Explosion 1

Explosions 1 and 3
Explosions 1
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TIME SERIES METHOD

@ K-group classification can be dealt with

k = argming,_ iy {d(x(X), R¥(\))} .
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TIME SERIES METHOD
@ K-group classification can be dealt with
k = argming, iy {d(x(A), R¥(N))}.

® Clustering of time series, by tackling the associated
functional data problem in the frequency domain.
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TIME SERIES METHOD

@ K-group classification can be dealt with

® Clustering of time series, by tackling the associated
functional data problem in the frequency domain.

© Other different definitions of depth can be considered, for
example: Fraiman and Muniz (2001), Cuevas et al.
(2007).
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TIME SERIES METHOD

e We define a new time series classification method based
on the integrated periodogram.
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TIME SERIES METHOD

e We define a new time series classification method based
on the integrated periodogram.

e The method can also work with nonstationary series by
splitting them into blocks and computing the integrated
periodogram of each block.
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method becomes robust.

Conclusions
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Alonso, David
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Lépez-Pintado
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e We define a new time series classification method based
on the integrated periodogram.

reme e The method can also work with nonstationary series by
splitting them into blocks and computing the integrated
e periodogram of each block.
S e By substituting the mean by the a-trimmed mean the
method becomes robust.
Conclusions e The method has shown good behavior in a wide range of

simulation exercises and with real data, improving on
existing methods.
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TIME SERIES METHOD

We define a new time series classification method based
on the integrated periodogram.

The method can also work with nonstationary series by
splitting them into blocks and computing the integrated
periodogram of each block.

By substituting the mean by the a-trimmed mean the
method becomes robust.

The method has shown good behavior in a wide range of
simulation exercises and with real data, improving on
existing methods.

It suggests that the integrated periodogram contains
useful information to classify time series.
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