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López-Pintado
and Juan

Romo

Time Series
Classification

Introduction

The Method

Robustness

Results

Further Work

Conclusions

Outline

• Time Series Classification
• Introduction
• The Method
• Robustness
• Results

• Further Work

• Conclusions



Robust
Functional

Classification
for Time

Series

Andrés M.
Alonso, David
Casado, Sara
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Introduction

• Time series can be studied from both time and
frequency domains.

• Short stationary series −→ the usual multivariate
techniques could be applied.

• Long stationary series −→ a frequency domain approach is
more appropriate.

• Nonstationary series −→ the frequency domain is essential.

• There are several works on classification methods from
both domains.

• Most authors have studied the classification of stationary
time series.



Robust
Functional

Classification
for Time

Series

Andrés M.
Alonso, David
Casado, Sara
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Introduction

Classification of Stationary Series

• Pulli (1996) considers the ratio of spectra.

• Kakizawa, Shumway and Taniguchi (1998) discriminate
multivariate time series with the Kullback-Leibler’s and the
Chernoff’s information measures.

Classification of Nonstationary Series

• Ombao et al. (2001) introduce the SLEX spectrum for a
nonstationary random process.

• Caiado et al. (2006): define a measure, based on the
periodogram, for both clustering and classifying stationary
and nonstationary time series.
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Introduction

Models for Nonstationary Series

• Priestley (1965) introduces the concept of a Cramér
representation with time-varying transfer function.

Xt =

∫ +π

−π
e iλtAt(λ)dξ(λ)

• Dahlhaus (1996) establishes an asymptotic framework for
locally stationary processes.

Xt,T = µ
( t

T

)
+

∫ +π

−π
e iλtA0

t,T (λ)dξ(λ)
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Context

• The Problem. Classification of time series: (xt) is a
new series we want to classify in one of K different
populations.

• The Way. We transform the time series problem into a
functional data question.

• The Tools
Functional Data: Each element is a real function χ(t),
t ∈ I ⊂ R.

Depth: The “centrality” or “outlyingness” of an
observation within a set of data. It provides a criterion to
order data from center-outward.
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Functional Data

Let (xt) = (x1, . . . , xT ) be a time series, the periodogram and
its cumulative version, the integrated periodogram, are:

IT (λj) =
1

2πT

∣∣∣∣∣
T∑

t=+1

xte
−itλj

∣∣∣∣∣
2

, λj ∈ S

FT (λj) =
1

cT

j∑
i=1

IT (λi ), λi ∈ S, λj ∈ S

where

S =
{
λj = 2πj

T , j = −
[
T−1

2

]
, . . . ,−1, 0,+1, . . . ,+

[
T
2

]}
is the Fourier set of frequencies.
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Classification Criterion

A new function χ is assigned to the group minimizing its
distance to a reference function R of the group.

• The reference function: The mean

R(k)(t) = χ̄(k)(t) =
1

N

N∑
e=1

χ(k)
e (t)

• The distance: The distance

d(χ1, χ2) =

∫
I
|χ1(t)− χ2(t)|dt, χk ∈ L1(I ), k = 1, 2

Remark: Our functional data belong to L1(I )
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Depth

Let G(χ(t)) = {(t, χ(t)) : t ∈ [a, b]} denote the graph of χ in R2,
and let

B(χi1
,...,χik

)={(t,y) | t∈[a,b], minr=1,...,k χir (t)≤y≤maxr=1,...,k χir (t)}

be the band determined by k functions.
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Depth

The Band Depth

• The proportion of bands containing the graph of χ is

BD
(j)
N (χ(t))=(Nj )

−1∑
1≤e1<e2<...<ej≤N I{G(χ(t))⊂B(χe1 (t),...,χej

(t))}

• This depth is defined, for 2 ≤ J ≤ N, as

BDN,J(χ(t))=
∑J

j=2 BD
(j)
N (χ(t))

Population versions:

BD(j)(X )=P{G(X )⊂B(Xe1 ,...,Xej
)}

BDJ(X )=
∑J

j=2 BD
(j)=

∑J
j=2 P{G(X )⊂B(Xe1 ,...,Xej

)}
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Depth

The Modified Band Depth
• By taking the Lebesgue measure —instead of I— of

A(χ;χi1
,...,χij

)≡{t∈[a,b] | minr=i1,...,ij
χr (t)≤χ(t)≤maxr=i1,...,ij

χr (t)},

MBD
(j)
N (χ(t))=(Nj )

−1∑
1≤e1<e2<...<ej≤N νr (A(χ(t);χe1 (t),...,χej

(t)))

• The modified (generalized) band depth is defined as

MBDN,J(χ(t))=
∑J

j=2 MBD
(j)
N (χ(t))

Population versions:

MBD(j)(X )=E
(
νr (A(X ;Xe1 ,...,Xej

))
)

MBDJ(X )=
∑J

j=2 MBD(j)(X )=
∑J

j=2 E
(
νr (A(X ;Xe1 ,...,Xej

))
)
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Adding Robustness

1. Our method depends on the group reference curve.
2. The mean function of a set of functions is not robust.
3. Robustness can be added to the process through the
reference curve.

⇓

We shall consider the α-trimmed mean, where only the
deepest elements are averaged:

R(k)(t) =
α

χ (t) =
1

n − [nα]

n−[nα]∑
e=1

χ(e)(t)

with [·] being the integer part function.
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Algorithms 1 and 2

Consider the samples (xt)
(k)
e , e = 1, . . . , nk for k = 1, 2.

1 For each series (xt)
(k)
e , if F (k)

g ,e(λ) is the integrated
periodogram of the g -th block, we construct the
function χ(k)

e (λ) = (F (k)

1,e(λ) . . .F (k)

G ,e(λ)) so that the
functional data are {χ(k)

e (λ)}, e = 1, . . . , nk for k = 1, 2

2 For both populations the group reference function is
calculated: R(λ)(k) = χ̄(k)(λ), in algorithm 1, or

R(λ)(k) =
α

χ (k)(λ), in algorithm 2, k = 1, 2

3 A new series (xt) is classified in
k = 1 if d(χ(λ),R(λ)(1)) < d(χ(λ),R(λ)(2))

k = 2 otherwise
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The SLEXbC Method

Using the SLEX (smooth localized complex exponential) model
of a nonstationary random process, Huang et al. (2004)
propose a classification method (SLEXbC).

We compare our algorithms with this method.

How SLEXbC works

1 It finds a basis from the SLEX library that can best detect
the differences.

2 It assigns to the class minimizing the Kullback-Leibler
divergence between the SLEX spectra.
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Simulations

Let (xt)
(k)
e be the e-th series of the k-th population; let εt ∼ N(0, 1) be

Gaussian noise.

Simulation 1. Series are stationary

X (1)

t = φX (1)

t−1 + ε(1)

t t = 1, . . . ,T

X (2)

t = ε(2)

t t = 1, . . . ,T

Training data sets sizes: n = 8 series of length T = 1024.
Testing data sets sizes: n = 10 series of length T = 1024.
Six comparisons: Values φ = −0.5, −0.3, −0.1, +0.1, +0.3 and +0.5.

Runs: 1000.
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Simulations

Contamination 1
MA(φ) instead of AR(φ) (with the same parameter value).

Contamination 2
φ = −0.9 instead of the correct value φ (with the correct

model).

Contamination 3
φ = +0.9 instead of the correct value φ (with the correct

model).

We always contaminate one series of the population P (1).
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Table: Simulation 1 with and without contamination

φ = -0.3 φ = -0.1 φ = +0.1 φ = +0.3

DbC 0.000 0.063 0.060 0.000

DbC-α 0.000 0.065 0.062 0.000

SLEXbC 0.000 0.131 0.127 0.000

DbC 0.000 0.077 0.074 0.000

DbC-α 0.000 0.064 0.062 0.000

SLEXbC 0.000 0.175 0.172 0.000

DbC 0.000 0.300 0.513 0.001

DbC-α 0.000 0.065 0.062 0.000

SLEXbC 0.001 0.377 0.491 0.002

DbC 0.001 0.512 0.300 0.000

DbC-α 0.000 0.064 0.062 0.000

SLEXbC 0.002 0.490 0.377 0.001
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Simulations

Let (xt)
(k)
e be the e-th series of the k-th population; let εt ∼ N(0, 1) be

Gaussian noise.

Simulation 2. Series are made of stationary blocks

X (1)

t = ε(1)

t if t = 1, . . . ,T/2

X (1)

t = −0.1X (1)

t−1 + ε(1)

t if t = T/2 + 1, . . . ,T

X (2)

t = ε(2)

t if t = 1, . . . ,T/2

X (2)

t = +0.1X (2)

t−1 + ε(2)

t if t = T/2 + 1, . . . ,T

Training data sets sizes: n = 8 and 16; T = 512, 1024 and 2048.
Testing data sets sizes: n = 10; T = 512, 1024 and 2048.

Runs: 1000.
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Simulations

Contamination 1
MA(φ) instead of AR(φ) (with the same parameter value).

Contamination 2
φ = −0.9 instead of the correct value φ (with the correct

model).

Contamination 3
φ = +0.9 instead of the correct value φ (with the correct

model).

We always contaminate one series of the population P (1).
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Table: Simulation 2 without contamination

8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.141 0.131 0.062 0.060 0.014 0.014

2 0.066 0.061 0.015 0.014 0.001 0.001
4 0.078 0.069 0.015 0.014 0.001 0.001
8 0.090 0.080 0.020 0.018 0.002 0.001

DbC-α 1 0.143 0.132 0.063 0.061 0.015 0.014

2 0.069 0.064 0.016 0.015 0.001 0.001
4 0.083 0.073 0.017 0.016 0.002 0.001
8 0.105 0.088 0.024 0.019 0.002 0.002

SLEXbC 0.114 0.086 0.038 0.025 0.007 0.003
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Table: Simulation exercise 2, sizes 8x512

Without contam. Contam. 1 Contam. 2 Contam. 3

DbC 1 0.141 0.143 0.258 0.457

2 0.066 0.070 0.135 0.147

4 0.078 0.083 0.137 0.187

8 0.090 0.102 0.143 0.225

DbC-α 1 0.143 0.145 0.145 0.145

2 0.069 0.072 0.070 0.073
4 0.083 0.086 0.081 0.083

8 0.105 0.114 0.104 0.108

SLEXbC 0.114 0.128 0.239 0.376
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Simulations

Let (xt)
(k)
e be the e-th series of the k-th population; let εt ∼ N(0, 1) be

Gaussian noise.

Simulation 3. Series are not stationary

If at;τ = 0.8 · [1− τ cos(πt/1024)], then

X (1)

t = at;0.5X
(1)

t−1 − 0.81X (1)

t−2 + ε(1)

t t = 1, . . . ,T

X (2)

t = at;τX
(2)

t−1 − 0.81X (2)

t−2 + ε(2)

t t = 1, . . . ,T

Training and testing data sets sizes: n = 10; T = 1024.
Three comparisons: τ values 0.4, 0.3 and 0.2.
Runs: 1000.
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Simulations

Contamination 1: τ = +0.2 instead of τ = +0.5.
Contamination 2: τ = −0.9 instead of the correct value τ .
Contamination 3: τ = +0.9 instead of the correct value τ .
We always contaminate one series of the population P (1).
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Table: Simulation 3 without contamination

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.218 0.063 0.019

2 0.119 0.006 0.000

4 0.101 0.002 0.000

8 0.123 0.003 0.000

DbC-α 1 0.226 0.065 0.021

2 0.128 0.006 0.000

4 0.112 0.002 0.000

8 0.139 0.004 0.000

SLEXbC 0.181 0.011 0.000
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Table: Simulation 3, τ = +0.4

Without contam. Contam. 1 Contam. 2 Contam. 3

DbC 1 0.218 0.232 0.254 0.257

2 0.119 0.143 0.500 0.153

4 0.101 0.144 0.500 0.128

8 0.123 0.177 0.499 0.132

DbC-α 1 0.226 0.241 0.231 0.234

2 0.128 0.131 0.128 0.125

4 0.112 0.121 0.113 0.114
8 0.139 0.150 0.141 0.138

SLEXbC 0.181 0.234 0.492 0.173
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López-Pintado
and Juan

Romo

Time Series
Classification

Introduction

The Method

Robustness

Results

Further Work

Conclusions

Real Data

We have evaluated our proposal in a benchmark data set
containing 8 explosions, 8 earthquakes and 1 extra
series—known as NZ event—not classified (but being an
earthquake or an explosion). Each series has two parts: the
first half is the part P, and the second half is S.
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Real data
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Real data
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Real Data

Exercise 1

Group 1 = { 8 earthquakes }

Group 2 = { 8 explosions }

NZ event

• Applying leave-one-out cross validation, both of our
algorithms misclassify only the first series of the
group 2 (explosions).

• Respecting the NZ event, both algorithms agree on
assigning it to the explosions group, as, for example,
Kakizawa et al. (1998) and Huang et al. (2004).
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Group 2 = { 8 explosions }

NZ event

• Applying leave-one-out cross validation, both of our
algorithms misclassify only the first series of the
group 2 (explosions).

• Respecting the NZ event, both algorithms agree on
assigning it to the explosions group, as, for example,
Kakizawa et al. (1998) and Huang et al. (2004).
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Real Data

Exercise 1

Group 1 = { 8 earthquakes }

Group 2 = { 8 explosions }

NZ event

• Applying leave-one-out cross validation, both of our
algorithms misclassify only the first series of the
group 2 (explosions).

• Respecting the NZ event, both algorithms agree on
assigning it to the explosions group, as, for example,
Kakizawa et al. (1998) and Huang et al. (2004).
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Real Data

Exercise 2

Group 1 = { 8 earthquakes + NZ event }

Group 2 = { 8 explosions }

We can consider that a atypical observation is presented in group 1.

• In this situation, algorithm 1 misclassifies the first and
third elements of group 2 (explosions), not only the first.

• But again algorithm 2 misclassifies only the first
series of group 2. This illustrates the robustness of our
second algorithm.
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Real Data

Exercise 2

Group 1 = { 8 earthquakes + NZ event }

Group 2 = { 8 explosions }

We can consider that a atypical observation is presented in group 1.

• In this situation, algorithm 1 misclassifies the first and
third elements of group 2 (explosions), not only the first.

• But again algorithm 2 misclassifies only the first
series of group 2. This illustrates the robustness of our
second algorithm.
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Real Data

Exercise 2

Group 1 = { 8 earthquakes + NZ event }

Group 2 = { 8 explosions }

We can consider that a atypical observation is presented in group 1.

• In this situation, algorithm 1 misclassifies the first and
third elements of group 2 (explosions), not only the first.

• But again algorithm 2 misclassifies only the first
series of group 2. This illustrates the robustness of our
second algorithm.
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Real Data

Results

Table: Misclassified series

Exercise 1 Exercise 2
DbC Explosion 1 Explosions 1 and 3
DbC-α Explosion 1 Explosions 1
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Time Series Method

1 K -group classification can be dealt with

k = argmin{1,...,K}

{
d(χ(λ),R(k)(λ))

}
.

2 Clustering of time series, by tackling the associated
functional data problem in the frequency domain.

3 Other different definitions of depth can be considered, for
example: Fraiman and Muniz (2001), Cuevas et al.
(2007).
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Time Series Method

• We define a new time series classification method based
on the integrated periodogram.

• The method can also work with nonstationary series by
splitting them into blocks and computing the integrated
periodogram of each block.

• By substituting the mean by the α-trimmed mean the
method becomes robust.

• The method has shown good behavior in a wide range of
simulation exercises and with real data, improving on
existing methods.

• It suggests that the integrated periodogram contains
useful information to classify time series.
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