Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Classificatio Introduction The Method Robustness

Further Worl

Conclusions

Robust Functional Classification for Time Series

Andrés M. Alonso¹, David Casado¹, Sara López-Pintado² and Juan Romo¹

¹ Universidad Carlos III de Madrid — 28903 Getafe (Madrid), Spain

 2 Columbia University — New York, NY 10032, USA

ERCIM, United Kingdom, 2011

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification Introduction

The Method Robustness Results

Further Wor

- Time Series Classification
 - Introduction
 - The Method
 - Robustness
 - Results
- Further Work
- Conclusions

Robust Functional Classification for Time Series

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series

The Method Robustness Results

Further Work

Conclusions

TIME SERIES CLASSIFICATION

Time Series Classification

The Metho Robustness

Further Wor

Conclusion

Introduction

 Time series can be studied from both time and frequency domains. Time Series

Introduction
The Method
Robustness
Results

Further Wor

Conclusions

- Time series can be studied from both time and frequency domains.
 - \bullet Short stationary series \longrightarrow the usual multivariate techniques could be applied.

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classificatio

Introduction
The Method
Robustness
Results

Further Wor

Conclusions

- Time series can be studied from both time and frequency domains.

 - \bullet Long stationary series \longrightarrow a frequency domain approach is more appropriate.

Introduction
The Method
Robustness
Results

Further Wor

Conclusions

- Time series can be studied from both time and frequency domains.

 - Long stationary series → a frequency domain approach is more appropriate.
 - Nonstationary series

 — the frequency domain is essential.

- Time series can be studied from both time and frequency domains.

 - \bullet Long stationary series \longrightarrow a frequency domain approach is more appropriate.
 - ullet Nonstationary series \longrightarrow the frequency domain is essential.
- There are several works on classification methods from both domains.

The Method Robustness Results

Further Work

Conclusions

- Time series can be studied from both time and frequency domains.

 - \bullet Long stationary series \longrightarrow a frequency domain approach is more appropriate.
 - \bullet Nonstationary series \longrightarrow the frequency domain is essential.
- There are several works on classification methods from both domains.
- Most authors have studied the classification of stationary time series.

Further Wor

Conclusions

Introduction

Classification of Stationary Series

- Pulli (1996) considers the ratio of spectra.
- Kakizawa, Shumway and Taniguchi (1998) discriminate multivariate time series with the Kullback-Leibler's and the Chernoff's information measures.

Classification of Nonstationary Series

- Ombao et al. (2001) introduce the SLEX spectrum for a nonstationary random process.
- Caiado et al. (2006): define a measure, based on the periodogram, for both clustering and classifying stationary and nonstationary time series.

INTRODUCTION

Models for Nonstationary Series

 Priestley (1965) introduces the concept of a Cramér representation with time-varying transfer function.

$$X_t = \int_{-\pi}^{+\pi} e^{i\lambda t} A_t(\lambda) d\xi(\lambda)$$

 Dahlhaus (1996) establishes an asymptotic framework for locally stationary processes.

$$X_{t,T} = \mu\left(\frac{t}{T}\right) + \int_{-\tau}^{+\pi} e^{i\lambda t} A_{t,T}^{0}(\lambda) d\xi(\lambda)$$

Time Series Classificatio Introduction

The Method Robustness Results

Further Wor

Conclusion

CONTEXT

 The Problem. Classification of time series: (x_t) is a new series we want to classify in one of K different populations. Time Series Classification Introduction The Method

Robustnes

= .1 .47

Conclusion

CONTEXT

- The Problem. Classification of time series: (x_t) is a new series we want to classify in one of K different populations.
- The Way. We transform the time series problem into a functional data question.

Further vvori

Conclusions

CONTEXT

- The Problem. Classification of time series: (x_t) is a new series we want to classify in one of K different populations.
- The Way. We transform the time series problem into a functional data question.
- The Tools

Functional Data: Each element is a real function $\chi(t)$, $t \in I \subset \mathbb{R}$.

Depth: The "centrality" or "outlyingness" of an observation within a set of data. It provides a criterion to order data from center-outward.

FUNCTIONAL DATA

Let $(x_t) = (x_1, \dots, x_T)$ be a time series, the **periodogram** and its cumulative version, the **integrated periodogram**, are:

$$I_{\tau}(\lambda_j) = \frac{1}{2\pi T} \left| \sum_{t=+1}^{T} x_t e^{-it\lambda_j} \right|^2, \quad \lambda_j \in \mathcal{S}$$

$$F_{\tau}(\lambda_j) = \frac{1}{c_{\tau}} \sum_{i=1}^{j} I_{\tau}(\lambda_i), \quad \lambda_i \in \mathcal{S}, \quad \lambda_j \in \mathcal{S}$$

where

$$S = \left\{ \lambda_j = \frac{2\pi j}{T}, \ j = -\left[\frac{T-1}{2}\right], \dots, -1, 0, +1, \dots, +\left[\frac{T}{2}\right] \right\}$$

is the Fourier set of frequencies.

CLASSIFICATION CRITERION

A new function χ is assigned to the group minimizing its distance to a reference function $\mathcal R$ of the group.

• The reference function: The mean

$$\mathcal{R}^{(k)}(t) = \bar{\chi}^{(k)}(t) = \frac{1}{N} \sum_{e=1}^{N} \chi_e^{(k)}(t)$$

The distance: The distance

$$d(\chi_1,\chi_2) = \int_I |\chi_1(t) - \chi_2(t)| dt, \quad \chi_k \in \mathcal{L}^1(I), \ k = 1,2$$

Remark: Our functional data belong to $\mathcal{L}^1(I)$

DEPTH

Let $G(\chi(t)) = \{(t, \chi(t)) : t \in [a, b]\}$ denote the graph of χ in \mathbb{R}^2 , and let

$$B(\chi_{i_1},...,\chi_{i_k}) = \{(t,y) \mid t \in [a,b], \; \min_{r=1,...,k} \chi_{i_r}(t) \leq y \leq \max_{r=1,...,k} \chi_{i_r}(t)\}$$

be the band determined by k functions.

DEPTH

The **Band Depth**

 \bullet The proportion of bands containing the graph of χ is

$$BD_N^{(j)}(\chi(t)) = {N \choose j}^{-1} \sum_{1 \leq e_1 < e_2 < \dots < e_j \leq N} \mathbb{I} \{ G(\chi(t)) \subset B(\chi_{e_1}(t), \dots, \chi_{e_j}(t)) \}$$

The **Band Depth**

ullet The proportion of bands containing the graph of χ is

$$BD_{N}^{(j)}(\chi(t)) = {N \choose j}^{-1} \sum_{1 \leq e_{1} < e_{2} < \dots < e_{j} \leq N} \mathbb{I} \{ G(\chi(t)) \subset B(\chi_{e_{1}}(t), \dots, \chi_{e_{j}}(t)) \}$$

• This depth is defined, for $2 \le J \le N$, as

$$BD_{N,J}(\chi(t)) = \sum_{j=2}^{J} BD_N^{(j)}(\chi(t))$$

DEPTH

The **Band Depth**

 \bullet The proportion of bands containing the graph of χ is

$$BD_{N}^{(j)}(\chi(t)) = {N \choose j}^{-1} \sum_{1 \leq e_{1} < e_{2} < \dots < e_{j} \leq N} \mathbb{I} \{ G(\chi(t)) \subset B(\chi_{e_{1}}(t), \dots, \chi_{e_{j}}(t)) \}$$

• This depth is defined, for $2 \le J \le N$, as

$$BD_{N,J}(\chi(t)) = \sum_{j=2}^{J} BD_N^{(j)}(\chi(t))$$

Population versions:

$$BD^{(j)}(\mathcal{X}) = P\{G(\mathcal{X}) \subset B(\mathcal{X}_{e_1}, ..., \mathcal{X}_{e_j})\}$$

$$BD_J(\mathcal{X}) = \sum_{j=2}^J BD^{(j)} = \sum_{j=2}^J P\{G(\mathcal{X}) \subset B(\mathcal{X}_{e_1}, ..., \mathcal{X}_{e_j})\}$$

DEPTH

The **Modified Band Depth**

• By taking the Lebesgue measure —instead of \mathbb{I} — of $A(\chi;\chi_{i_1},...,\chi_{i_l})\equiv\{t\in[a,b]\mid \min_{r=i_1,...,i_l}\chi_r(t)\leq\chi(t)\leq\max_{r=i_1,...,i_l}\chi_r(t)\},$

$$MBD_{N}^{(j)}(\chi(t)) = {N \choose j}^{-1} \sum_{1 \leq e_{1} < e_{2} < \dots < e_{j} \leq N} \nu_{r} (A(\chi(t); \chi_{e_{1}}(t), \dots, \chi_{e_{j}}(t)))$$

Depth

The Modified Band Depth

• By taking the Lebesgue measure —instead of \mathbb{I} — of $A(\chi;\chi_{i_1},...,\chi_{i_l}) = \{t \in [a,b] \mid \min_{r=i_1,...,i_l} \chi_r(t) \le \chi(t) \le \max_{r=i_1,...,i_l} \chi_r(t)\},$

$$MBD_{N}^{(j)}(\chi(t)) = {N \choose j}^{-1} \sum_{1 \leq e_{1} < e_{2} < \dots < e_{j} \leq N} \nu_{r} (A(\chi(t); \chi_{e_{1}}(t), \dots, \chi_{e_{j}}(t)))$$

The modified (generalized) band depth is defined as

$$MBD_{N,J}(\chi(t)) {=} \sum_{j=2}^{J} MBD_{N}^{(j)}(\chi(t))$$

DEPTH

The **Modified Band Depth**

• By taking the Lebesgue measure —instead of \mathbb{I} — of $A(\chi;\chi_{i_1},...,\chi_{i_t})\equiv\{t\in[a,b]\mid \min_{r=i_1,...,i_t}\chi_r(t)\leq\chi(t)\leq\max_{r=i_1,...,i_t}\chi_r(t)\},$

$$MBD_{N}^{(j)}(\chi(t)) = {N \choose j}^{-1} \sum_{1 \leq e_{1} < e_{2} < \dots < e_{j} \leq N} \nu_{r} (A(\chi(t); \chi_{e_{1}}(t), \dots, \chi_{e_{j}}(t)))$$

The modified (generalized) band depth is defined as

$$MBD_{N,J}(\chi(t)) = \sum_{j=2}^{J} MBD_N^{(j)}(\chi(t))$$

Population versions:

$$\begin{split} \textit{MBD}^{(j)}(\mathcal{X}) &= \mathbb{E}\left(\nu_r(\textit{A}(\mathcal{X}; \mathcal{X}_{e_1}, ..., \mathcal{X}_{e_j}))\right) \\ \textit{MBD}_J(\mathcal{X}) &= \sum_{j=2}^{J} \textit{MBD}^{(j)}(\mathcal{X}) = \sum_{j=2}^{J} \mathbb{E}\left(\nu_r(\textit{A}(\mathcal{X}; \mathcal{X}_{e_1}, ..., \mathcal{X}_{e_j}))\right) \end{split}$$

Adding Robustness

- 1. Our method depends on the group reference curve.
- 2. The mean function of a set of functions is not robust.
- 3. Robustness can be added to the process through the reference curve.

We shall consider the α -**trimmed mean**, where only the deepest elements are averaged:

$$\mathcal{R}^{(k)}(t) = \stackrel{lpha}{\overline{\chi}}(t) = rac{1}{n - [nlpha]} \sum_{e=1}^{n - [nlpha]} \chi_{(e)}(t)$$

with $[\cdot]$ being the integer part function.

Time Series Classification Introduction The Method Robustness Results

Further Wor

Conclusion

ALGORITHMS 1 AND 2

Consider the samples $(x_t)_e^{(k)}$, $e = 1, ..., n_k$ for k = 1, 2.

Front have Manager

Conclusion

Algorithms 1 and 2

Consider the samples $(x_t)_e^{(k)}$, $e = 1, ..., n_k$ for k = 1, 2.

① For each series $(x_t)_e^{(k)}$, if $F_{g,e}^{(k)}(\lambda)$ is the integrated periodogram of the g-th block, we **construct the** function $\chi_e^{(k)}(\lambda) = (F_{1,e}^{(k)}(\lambda) \dots F_{G,e}^{(k)}(\lambda))$ so that the functional data are $\{\chi_e^{(k)}(\lambda)\}, e = 1, \dots, n_k \text{ for } k = 1, 2$

Algorithms 1 and 2

Consider the samples $(x_t)_e^{(k)}$, $e = 1, ..., n_k$ for k = 1, 2.

- 1 For each series $(x_t)_e^{(k)}$, if $F_{g,e}^{(k)}(\lambda)$ is the integrated periodogram of the g-th block, we **construct the** function $\chi_e^{(k)}(\lambda) = (F_{1,e}^{(k)}(\lambda) \dots F_{G,e}^{(k)}(\lambda))$ so that the functional data are $\{\chi_e^{(k)}(\lambda)\},\ e=1,\dots,n_k$ for k=1,2
- **2** For both populations **the group reference function** is calculated: $\mathcal{R}(\lambda)^{(k)} = \bar{\chi}^{(k)}(\lambda)$, in algorithm 1, or $\mathcal{R}(\lambda)^{(k)} = \hat{\bar{\chi}}^{(k)}(\lambda)$, in algorithm 2, k = 1, 2

Algorithms 1 and 2

Consider the samples $(x_t)_e^{(k)}$, $e = 1, ..., n_k$ for k = 1, 2.

- 1 For each series $(x_t)_e^{(k)}$, if $F_{g,e}^{(k)}(\lambda)$ is the integrated periodogram of the g-th block, we **construct the** function $\chi_e^{(k)}(\lambda) = (F_{1,e}^{(k)}(\lambda) \dots F_{G,e}^{(k)}(\lambda))$ so that the functional data are $\{\chi_e^{(k)}(\lambda)\}, e = 1, \dots, n_k \text{ for } k = 1, 2\}$
- **2** For both populations **the group reference function** is calculated: $\mathcal{R}(\lambda)^{(k)} = \bar{\chi}^{(k)}(\lambda)$, in algorithm 1, or $\mathcal{R}(\lambda)^{(k)} = \frac{\hat{\alpha}}{\lambda}^{(k)}(\lambda)$, in algorithm 2, k = 1, 2
- 3 A new series (x_t) is classified in

$$\left\{ \begin{array}{ll} k=1 & \text{if} & d(\chi(\lambda),\mathcal{R}(\lambda)^{\scriptscriptstyle (1)}) < d(\chi(\lambda),\mathcal{R}(\lambda)^{\scriptscriptstyle (2)}) \\ \\ k=2 & \text{otherwise} \end{array} \right.$$

Further Wor

Conclusions

THE SLEXBC METHOD

Using the SLEX (smooth localized complex exponential) model of a nonstationary random process, Huang et al. (2004) propose a classification method (SLEXbC).

We compare our algorithms with this method.

How SLEXbC works

- 1 It finds a basis from the SLEX library that can best detect the differences.
- 2 It assigns to the class minimizing the Kullback-Leibler divergence between the SLEX spectra.

SIMULATIONS

Let $(x_t)_e^{(k)}$ be the *e*-th series of the *k*-th population; let $\epsilon_t \sim N(0,1)$ be Gaussian noise.

Simulation 1. Series are stationary

$$X_t^{(1)} = \phi X_{t-1}^{(1)} + \epsilon_t^{(1)}$$
 $t = 1, ..., T$

$$X_t^{(2)} = \epsilon_t^{(2)}$$
 $t = 1, \dots, T$

Training data sets sizes: n = 8 series of length T = 1024. Testing data sets sizes: n = 10 series of length T = 1024.

Six comparisons: Values $\phi = -0.5, -0.3, -0.1, +0.1, +0.3$ and +0.5.

Runs: 1000.

SIMULATIONS

Contamination 1

 $\mathsf{MA}(\phi)$ instead of $\mathsf{AR}(\phi)$ (with the same parameter value).

Contamination 2

 $\phi = -0.9$ instead of the correct value ϕ (with the correct model).

Contamination 3

 $\phi = +0.9$ instead of the correct value ϕ (with the correct model).

We always contaminate one series of the population $P^{(1)}$.

Robust Functional Classification for Time Series

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classificatio Introduction

Robustr

Results

Further Worl

Robust Functional Classification for Time Series

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classificatio

The Method Robustness

Results

Further Wor

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification Introduction The Method Robustness

Results Further Worl

Table: Simulation 1 with and without contamination

	$\phi =$ -0.3	$\phi =$ -0.1	$\phi = +0.1$	$\phi = +0.3$
DbC	0.000	0.063	0.060	0.000
$\mathbf{DbC}\text{-}\alpha$	0.000	0.065	0.062	0.000
SLEXbC	0.000	0.131	0.127	0.000
DbC	0.000	0.077	0.074	0.000
$\mathbf{DbC}\text{-}\alpha$	0.000	0.064	0.062	0.000
SLEXbC	0.000	0.175	0.172	0.000
DbC	0.000	0.300	0.513	0.001
$\mathbf{DbC}\text{-}\alpha$	0.000	0.065	0.062	0.000
SLEXbC	0.001	0.377	0.491	0.002
DbC	0.001	0.512	0.300	0.000
$\mathbf{DbC}\text{-}\alpha$	0.000	0.064	0.062	0.000
SLEXbC	0.002	0.490	0.377	0.001

Robust Functional Classification for Time Series

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification

The Method Robustness

Results

Further Wor

SIMULATIONS

Let $(x_t)_e^{(k)}$ be the *e*-th series of the *k*-th population; let $\epsilon_t \sim N(0,1)$ be Gaussian noise.

Simulation 2. Series are made of stationary blocks

$$\begin{array}{lll} X_t^{(1)} = \epsilon_t^{(1)} & \text{if} & t = 1, \dots, T/2 \\ X_t^{(1)} = -0.1 X_{t-1}^{(1)} + \epsilon_t^{(1)} & \text{if} & t = T/2 + 1, \dots, T \end{array}$$

$$egin{aligned} X_t^{(2)} &= \epsilon_t^{(2)} & & ext{if} \quad t = 1, \dots, T/2 \ X_t^{(2)} &= +0.1 X_{t-1}^{(2)} + \epsilon_t^{(2)} & & ext{if} \quad t = T/2 + 1, \dots, T \end{aligned}$$

Training data sets sizes: n=8 and 16; T=512, 1024 and 2048. Testing data sets sizes: n=10; T=512, 1024 and 2048. Runs: 1000.

and Juan Romo

SIMULATIONS

Contamination 1

 $MA(\phi)$ instead of $AR(\phi)$ (with the same parameter value).

Contamination 2

 $\phi = -0.9$ instead of the correct value ϕ (with the correct model).

Contamination 3

 $\phi = +0.9$ instead of the correct value ϕ (with the correct model).

We always contaminate one series of the population $P^{(1)}$.

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classificatio Introduction

Robustness Results

E ... 147

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification

The Method Robustness

Results

Eurther Wer

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification

The Method Robustness Results

Further Worl

Conclusions

Table: Simulation 2 without contamination

	8×512	16×512	8×1024	16×1024	8×2048	16×2048
DbC 1	0.141	0.131	0.062	0.060	0.014	0.014
2	0.066	0.061	0.015	0.014	0.001	0.001
4	0.078	0.069	0.015	0.014	0.001	0.001
8	0.090	0.080	0.020	0.018	0.002	0.001
DbC- α 1	0.143	0.132	0.063	0.061	0.015	0.014
2	0.069	0.064	0.016	0.015	0.001	0.001
4	0.083	0.073	0.017	0.016	0.002	0.001
8	0.105	0.088	0.024	0.019	0.002	0.002
SLEXbC	0.114	0.086	0.038	0.025	0.007	0.003

Classification
Introduction
The Method
Robustness
Results

Further Wor

Table: Simulation exercise 2, sizes 8x512

	Without contam.	Contam.	1 Contam.	2 Contam. 3
DbC 1	0.141	0.143	0.258	0.457
2	0.066	0.070	0.135	0.147
4	0.078	0.083	0.137	0.187
8	0.090	0.102	0.143	0.225
DbC- α 1	0.143	0.145	0.145	0.145
2	0.069	0.072	0.070	0.073
4	0.083	0.086	0.081	0.083
8	0.105	0.114	0.104	0.108
SLEXbC	0.114	0.128	0.239	0.376

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification Introduction The Method Robustness

Results

Further Work

Conclusions

SIMULATIONS

Let $(x_t)_e^{(k)}$ be the *e*-th series of the *k*-th population; let $\epsilon_t \sim N(0,1)$ be Gaussian noise.

Simulation 3. Series are not stationary

If
$$a_{t; au}=0.8\cdot[1- au\cos(\pi t/1024)]$$
, then

$$X_t^{(1)} = a_{t;0.5} X_{t-1}^{(1)} - 0.81 X_{t-2}^{(1)} + \epsilon_t^{(1)}$$
 $t = 1, \dots, T$

$$X_t^{(2)} = a_{t;\tau} X_{t-1}^{(2)} - 0.81 X_{t-2}^{(2)} + \epsilon_t^{(2)}$$
 $t = 1, \dots, T$

Training and testing data sets sizes: n = 10; T = 1024.

Three comparisons: τ values 0.4, 0.3 and 0.2.

Runs: 1000.

The Methor Robustnes

Further Wor

Conclusions

SIMULATIONS

Contamination 1: $\tau = +0.2$ instead of $\tau = +0.5$.

Contamination 2: $\tau = -0.9$ instead of the correct value τ .

Contamination 3: $\tau = +0.9$ instead of the correct value τ .

We always contaminate one series of the population $P^{(1)}$.

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification Introduction The Method Robustness

Results

Time-varying autoregressive (τ = 0.4) integrated periodogram

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification Introduction The Method Robustness Results

Further Wor

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification Introduction The Method Robustness Results

Further Wor

Frequency

Time

Time Series Classification Introduction The Method Robustness Results

Further Work

Table: Simulation 3 without contamination

	au = 0.4	au = 0.3	au = 0.2
DbC 1	0.218	0.063	0.019
2	0.119	0.006	0.000
4	0.101	0.002	0.000
8	0.123	0.003	0.000
$lue{\mathbf{DbC}}$ - $lpha$ 1	0.226	0.065	0.021
2	0.128	0.006	0.000
4	0.112	0.002	0.000
8	0.139	0.004	0.000
SLEXbC	0.181	0.011	0.000

Time Series Classification Introduction The Method Robustness Results

Further Work

Table: Simulation 3, $\tau = +0.4$

	Without contam.	Contam. 1	Contam. 2	Contam. 3
DbC 1	0.218	0.232	0.254	0.257
2	0.119	0.143	0.500	0.153
4	0.101	0.144	0.500	0.128
8	0.123	0.177	0.499	0.132
DbC- α 1	0.226	0.241	0.231	0.234
2	0.128	0.131	0.128	0.125
4	0.112	0.121	0.113	0.114
8	0.139	0.150	0.141	0.138
SLEXbC	0.181	0.234	0.492	0.173

Conclusions

REAL DATA

We have evaluated our proposal in a benchmark data set containing 8 explosions, 8 earthquakes and 1 extra series—known as NZ event—not classified (but being an earthquake or an explosion). Each series has two parts: the first half is the part P, and the second half is S.

Time Series Classification

Introduction The Method

Robustne Results

Further Wor

Conclusions

Real data

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification

The Meth

Results

Further Wor

Conclusions

REAL DATA

Time Series Classification Introduction The Method Robustness

Results

Further Wor

Conclusions

Exercise 1

Group $1 = \{ 8 \text{ earthquakes } \}$ Group $2 = \{ 8 \text{ explosions } \}$

NZ event

Time Series Classification Introduction The Method Robustness Results

Further Wor

Conclusions

Exercise 1

```
Group 1 = \{ 8 \text{ earthquakes } \}
Group 2 = \{ 8 \text{ explosions } \}
NZ event
```

 Applying leave-one-out cross validation, both of our algorithms misclassify only the first series of the group 2 (explosions).

Time Series Classification Introduction The Method Robustness Results

Further Wor

Conclusions

Exercise 1

```
Group 1 = \{ 8 \text{ earthquakes } \}
Group 2 = \{ 8 \text{ explosions } \}
N7 event
```

- Applying leave-one-out cross validation, both of our algorithms misclassify only the first series of the group 2 (explosions).
- Respecting the NZ event, both algorithms agree on assigning it to the explosions group, as, for example, Kakizawa et al. (1998) and Huang et al. (2004).

Romo

Conclusion

REAL DATA

Exercise 2

Group
$$1 = \{ 8 \text{ earthquakes} + NZ \text{ event } \}$$

Group
$$2 = \{ 8 \text{ explosions } \}$$

We can consider that a atypical observation is presented in group 1.

Time Series Classification Introduction The Method Robustness Results

Further Wor

Conclusions

Exercise 2

Group
$$1 = \{ 8 \text{ earthquakes} + NZ \text{ event } \}$$

Group $2 = \{ 8 \text{ explosions } \}$

We can consider that a atypical observation is presented in group 1.

 In this situation, algorithm 1 misclassifies the first and third elements of group 2 (explosions), not only the first.

Conclusions

REAL DATA

Exercise 2

Group
$$1 = \{ 8 \text{ earthquakes} + NZ \text{ event } \}$$

Group $2 = \{ 8 \text{ explosions } \}$

We can consider that a atypical observation is presented in group 1.

- In this situation, algorithm 1 misclassifies the first and third elements of group 2 (explosions), not only the first.
- But again algorithm 2 misclassifies only the first series of group 2. This illustrates the robustness of our second algorithm.

Romo

Conclusions

REAL DATA

Results

Table: Misclassified series

	Exercise 1	Exercise 2
DbC	Explosion 1	Explosions 1 and 3
${f DbC} ext{-}lpha$	Explosion 1	Explosions 1

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification Introduction The Method Robustness

Further Work

Conclusions

FURTHER WORK

Conclusions

TIME SERIES METHOD

f 1 K-group classification can be dealt with

$$k = argmin_{\{1,...,K\}} \left\{ d(\chi(\lambda), \mathcal{R}^{(k)}(\lambda)) \right\}.$$

Conclusions

TIME SERIES METHOD

1 K-group classification can be dealt with

$$k = argmin_{\{1,...,K\}} \left\{ d(\chi(\lambda), \mathcal{R}^{(k)}(\lambda)) \right\}.$$

2 Clustering of time series, by tackling the associated functional data problem in the frequency domain.

Conclusions

Time Series Method

1 K-group classification can be dealt with

$$k = argmin_{\{1,...,K\}} \left\{ d(\chi(\lambda), \mathcal{R}^{(k)}(\lambda)) \right\}.$$

- 2 Clustering of time series, by tackling the associated functional data problem in the frequency domain.
- Other different definitions of depth can be considered, for example: Fraiman and Muniz (2001), Cuevas et al. (2007).

Andrés M. Alonso, David Casado, Sara López-Pintado and Juan Romo

Time Series Classification Introduction The Method Robustness

Eurthar Work

Conclusions

CONCLUSIONS

Time Series Classificatio Introduction The Method Robustness

Further Wor

Conclusions

TIME SERIES METHOD

 We define a new time series classification method based on the integrated periodogram.

Classification
Introduction
The Method
Robustness
Results

Further Wor

Conclusions

- We define a new time series classification method based on the integrated periodogram.
- The method can also work with nonstationary series by splitting them into blocks and computing the integrated periodogram of each block.

Conclusions

- We define a new time series classification method based on the integrated periodogram.
- The method can also work with nonstationary series by splitting them into blocks and computing the integrated periodogram of each block.
- By substituting the mean by the α -trimmed mean the method becomes **robust**.

Conclusions

- We define a new time series classification method based on the integrated periodogram.
- The method can also work with nonstationary series by splitting them into blocks and computing the integrated periodogram of each block.
- By substituting the mean by the α -trimmed mean the method becomes **robust**.
- The method has shown good behavior in a wide range of simulation exercises and with real data, improving on existing methods.

Conclusions

- We define a new time series classification method based on the integrated periodogram.
- The method can also work with nonstationary series by splitting them into blocks and computing the integrated periodogram of each block.
- By substituting the mean by the α -trimmed mean the method becomes **robust**.
- The method has shown good behavior in a wide range of simulation exercises and with real data, improving on existing methods.
- It suggests that the integrated periodogram contains useful information to classify time series.

Conclusions

REFERENCES

- Caiado, J., N. Crato and D. Peña (2006). A Periodogram-Based Metric for Time Series Classification. Computational Statistics & Data Analysis. 50, 2668–2684.
 - Dahlhaus, R. (1996). Asymptotic Statistical Inference for Nonstationary Processes with Evolutionary Spectra. Athens Conference on Applied Probability and Time Series Analysis, Vol. 2 (P.M. Robinson and M. Rosenblatt, eds.). Lecture Notes in Statist. 115 145–159. Springer--Verlag. 6, 171–191.
- Huang, H., H. Ombao and D.S. Stoffer (2004). Discrimination and Classification of Nonstationary Time Series Using the SLEX Model. *Journal of the American Statistical* Association. 99 (467), 763–774.
- Kakizawa, Y., R.H. Shumway and M. Taniguchi (1998). Discrimination and Clustering for Multivariate Time Series. *Journal of the American Statistical Association*. 93 (441), 328–340.

Conclusions

REFERENCES

- López-Pintado, S., and J. Romo (2009). On the Concept of Depth for Functional Data. *Journal of the American Statistical Association*. 93 (441), 328–340.
- Ombao, H.C., J.A. Raz, R. von Sachs and B.A. Malow (2001). Automatic Statistical Analysis of Bivariate Nonstationary Time Series. *Journal of the American Statistical Association*. 104 (486), 704–717.
 - Pulli, J. (1996). Extracting and processing signal parameters for regional seismic event identification, in Monitoring a Comprehensive Test Ban Treaty.
- Priestley, M. (1965). Evolutionary Spectra and Non-Stationary
 Processes. Journal of the Royal Statistical Society. Series
 B, 27 (2), 204–237. NATO Advanced Study Institute
 Series. Vol. 303, Kluwer Press, 743–754 (eds E. Husebye and A. Dainty).