

Tema 5. Muestreo y distribuciones muestrales

Contenidos

- Muestreo y muestras aleatorias simples
- La distribución de la media en el muestreo
- La distribución de la varianza muestral

Lecturas recomendadas:

- Capítulo 7 del libro de Newbold, Carlson y Thorne (2009).
- Capítulo 7 del libro de Peña (2001).
- Capítulos 19 a 21 del libro de Peña y Romo (1997).

Tema 5. Muestreo y distribuciones muestrales

Objetivos de aprendizaje

- Saber qué es una muestra aleatoria simple
- Conocer la distribución de la media muestral
 - Su media y su varianza
 - Su distribución en el caso normal
 - Su distribución aproximada en el caso general (teorema central del límite)
- Conocer la distribución de la varianza muestral
 - Su media
 - Su distribución en el caso normal

Muestreo

Motivación

- En muchos casos se desea obtener información estadística sobre poblaciones numerosas
 - Situación laboral de las personas en edad de trabajar en España
 - Fiabilidad de un modelo de automóvil en un año
 - Precipitación anual en la Comunidad de Madrid
- Puede ser imposible (por falta de recursos) obtener la información relativa a todos los individuos
- Se estudia una muestra representativa de la población
 - Un subconjunto de la población que permita obtener información fiable sobre el total de dicha población

Muestras aleatorias simples

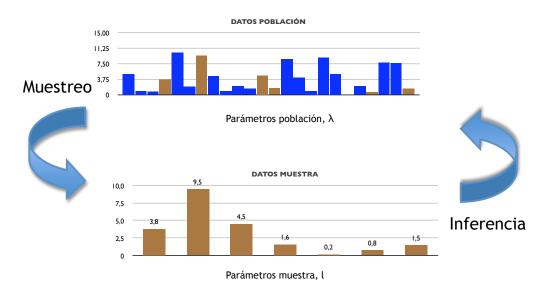
Cómo seleccionar una muestra

- Tamaño reducido
- Ausencia de sesgos
 - Conclusiones obtenidas de la muestra son válidas para la población
- Facilidad en la definición de la muestra
- Mejor alternativa: Muestras aleatorias simples
 - Cada miembro de la población tiene la misma probabilidad de pertenecer a la muestra
 - La selección se realiza de manera independiente
 - La selección de un individuo concreto no afecta a la probabilidad de seleccionar cualquiera de los otros
 - En la práctica, selección basada en números aleatorios

Procedimiento de inferencia

Inferencia

- Partiendo de la distribución de la variable aleatoria en la muestra
- Obtener información sobre distribución de la variable en la población
- Valores de interés: cálculo de estadísticos para la media, varianza, proporciones



Ejemplo de muestreo e inferencia

Ejemplo Consideremos el ejemplo de la figura anterior:

- Población compuesta por 24 individuos
- Variable aleatoria de interés:
 - Tiempo para completar una consulta médica
- Valores:

■ Promedio de la población: 4,0

Ejemplo de muestreo e inferencia

Muestra 1

■ Muestra seleccionada en la figura, tamaño 7:

- Estadístico de interés: promedio de la muestra 3,1
- Error (sesgo) relativo: (4, 0 3, 1)/4, 0 = 0,225

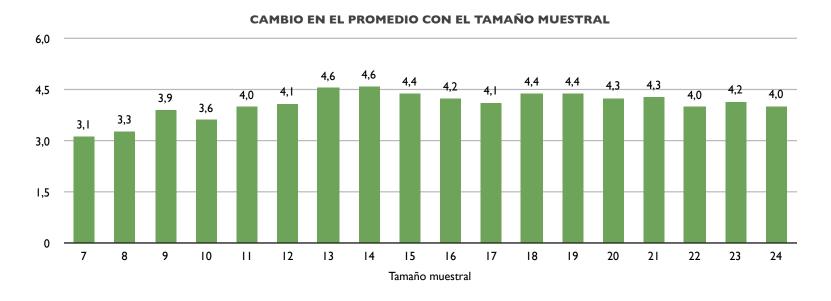
Cambios en el muestreo

- Selecciones alternativas de los elementos de la muestra
- Aumento del tamaño de la muestra

Ejemplo de muestreo

Cambios en el tamaño muestral

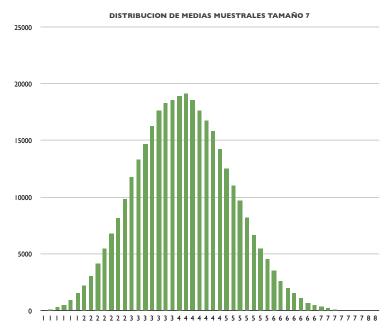
- Si a la muestra del ejemplo anterior le añadimos nuevos elementos, el promedio muestral cambia
- Se aproxima al valor de la media poblacional



Ejemplo de muestreo

■ Si seleccionamos las primeras 7 observaciones obtenemos un promedio de la muestra igual a 5,8:

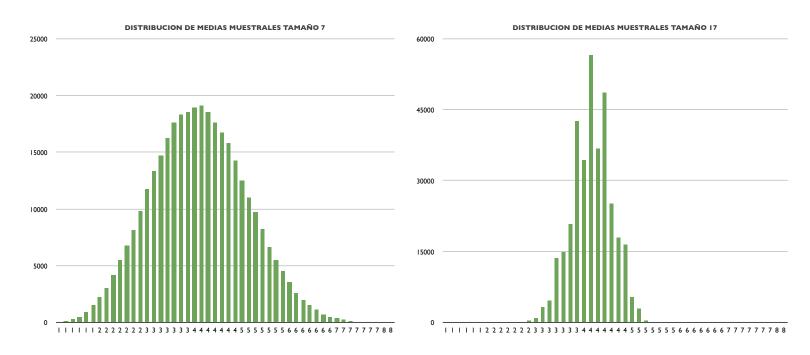
■ Si consideramos todas las selecciones posibles de 7 observaciones (346,104 posibilidades):



Distribuciones en el muestreo

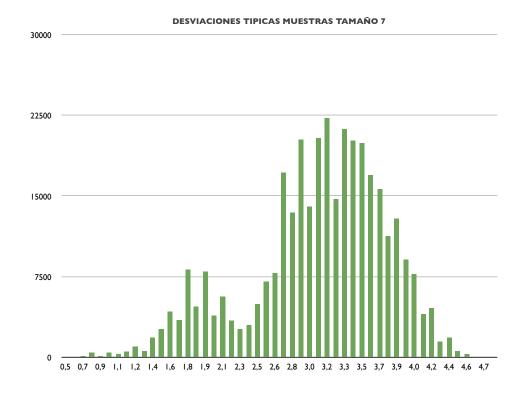
Distribución de la media muestral

■ Para todas las muestras de tamaño 7 y 17 obtenemos:



Distribuciones en el muestreo

- Se obtienen resultados similares para otros estadísticos
- Para la desviación típica de muestras de tamaño 7 obtenemos:



Distribuciones en el muestreo - Conclusiones

- El valor del promedio muestral es una variable aleatoria (los estadísticos son variables aleatorias)
 - Depende de la selección (aleatoria) de los individuos en la muestra
- Distribución muestral del estadístico: distribución de probabilidad del valor de interés para todas las muestras del mismo tamaño
- La distribución muestral cambia con el tamaño de la muestra
 - Variabilidad de estadísticos muestrales disminuye con el tamaño de la muestra

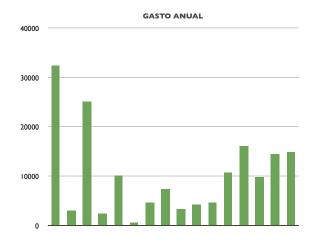
El problema de interés

- La media poblacional es un parámetro de gran interés en muchas situaciones prácticas
- Por ejemplo, queremos conocer el promedio de:
 - los ingresos familiares en España el año 2007
 - la proporción de préstamos morosos el último mes
 - el precio de compra de viviendas en la Comunidad de Madrid el pasado mes
- A partir de una muestra (reducida) de valores queremos calcular
 - Una buena aproximación al valor correcto (inevitablemente con error)
 - Y una estimación del error en la aproximación

La distribución de la media muestral - Ejemplo

- Información sobre el gasto familiar en España
- Disponemos de los datos siguientes (gasto anual por hogar, EPF)

Gasto	32545,76	3140,24	25205,64	2474,28	10242,34	721,16
	4855,80	7449,74	3466,50	4400,80	4740,00	10830,00
	16240,88	9840,12	14534,96	14960,00		
	I					



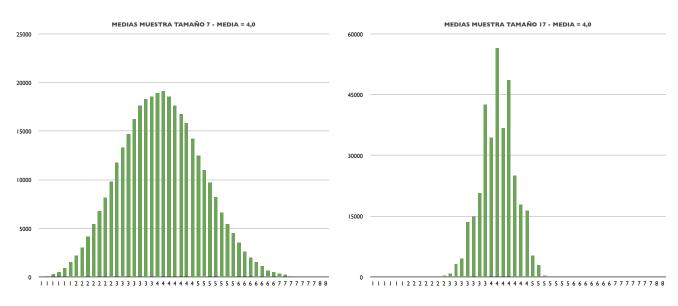
- Valor de interés: estimación de la media nacional (media de la variable aleatoria)
 - A partir de los datos disponibles en la muestra
- ¿Qué estadístico de la muestra se parece al promedio nacional (media de la población)?
- El valor esperado de la media de la muestra es la media de la población

$$E\left[\frac{1}{n}\sum_{i=1}^{n}x_i\right] = E[X]$$

- Estimamos la media de la población a partir de la media de la muestra
 - En nuestro ejemplo: 10353,01 euros

Más datos de la distribución

- Media de una muestra en general diferente de la media de la población
- ¿Podemos conocer la magnitud del error que estamos cometiendo?
 - Depende de la distribución de la media muestral
 - En particular, de su variabilidad (desviación respecto de la media)
 - ¿En cual de los casos siguientes tenemos menos error?



La variabilidad de la media muestral

lacktriangle La varianza de la media muestral \bar{x} (una medida del error) vale

$$V[\bar{x}] = V\left[\frac{1}{n}\sum_{i=1}^{n} x_i\right] = \frac{1}{n}\sigma^2$$

- \blacksquare En el ejemplo anterior, $V[\bar{x}]=76{,}458{,}643$ y $s[\bar{x}]=8{,}744$ euros
- El valor de la varianza decrece si n aumenta
- Podemos reducir el error aumentando el tamaño de la muestra
 - La reducción en el error es lenta
 - Para reducir el error (medido por la desviación típica) a la mitad debemos aumentar el tamaño de la muestra 4 veces

La distribución de la media muestral

- El valor de la varianza de la media muestral solo nos dice si el error puede ser grande o pequeño
- Para obtener una respuesta más precisa deberíamos conocer la distribución de la media muestral
- ullet Si la variable X tiene una distribución normal, entonces

$$\frac{\frac{1}{n}\sum_{i=1}^{n} x_i - E[X]}{\sqrt{\sigma^2/n}} \sim N(0,1)$$

- Queremos obtener una medida del error de estimación
- Utilizando el resultado

$$\frac{\frac{1}{n}\sum_{i=1}^{n} x_i - E[X]}{\sqrt{\sigma^2/n}} \sim N(0,1)$$

- Pero habitualmente no conocemos σ^2
 - Aproximamos este valor con el correspondiente a la muestra (razonable si n es grande)
- De las tablas de la normal construimos un intervalo que nos proporciona una indicación del error
- El intervalo se selecciona de manera que $P(-\beta \le Z \le \beta) = \alpha$ para el nivel de error (confianza) α deseado

Distribución de la media muestral - Ejemplo

- Suponemos una distribución normal de la variable gasto anual de hogares
 - Escogemos un nivel de confianza de 0,95
 - ullet De las tablas de la normal estándar sabemos que para $Z \sim N(0,1)$

$$P(-1,96 \le Z \le 1,96) = 0,95$$

- De los datos muestrales, la media muestral vale $\bar{x}=10{,}353$ y la desviación típica muestral vale $s=8{,}744$
- Por el resultado anterior sobre la distribución de la media muestral,

$$P(-\beta \le \frac{\bar{x} - E[X]}{s} \le \beta) = P(-1, 96 \le \frac{10353 - E[X]}{8744} \le 1, 96) = 0, 95$$

$$[10353 - 1,96 \times 8744, 10353 + 1,96 \times 8744] = [-6785, 27491]$$

El teorema central del límite

- Distribución de la media muestral si X no es normal
- Si cumple ciertas condiciones: teorema central del límite

Dada una muestra aleatoria simple $\{x_i\}$ de tamaño n obtenida de una variable aleatoria X con media E[X] y varianza σ^2 finitas, se cumple que

$$\frac{\frac{1}{n}\sum_{i=1}^{n} x_i - E[X]}{\sqrt{\sigma^2/n}} \to N(0,1)$$

conforme $n \to \infty$

 La distribución de la media muestral se parece a una distribución normal para muestras grandes

La varianza muestral

- En muchos casos es importante conocer el valor de la varianza de la población
 - Para aplicar el teorema central del límite
 - Para estimar riesgos en inversiones (el riesgo depende de la varianza)
 - Para estimar desigualdades en ingresos, rentas, etc.
- Repetimos el estudio que hemos realizado para la media muestral
- Partimos de que la varianza muestral es una variable aleatoria
- Queremos relacionar sus momentos con los de la población
- Y si es posible, identificar su distribución

Esperanza de la varianza muestral

• Si \bar{x} denota la media muestral, se tiene que

$$E\left[\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2\right] = \frac{n-1}{n}\sigma^2$$

- El valor esperado de la varianza muestral no es la varianza de la población
- Definamos la varianza muestral como

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Esperanza de la varianza muestral

- Con esta definición, tenemos $E[s^2] = \sigma^2$
 - ullet El valor esperado de s^2 coincide con el valor deseado (varianza de la población)
 - ullet s^2 es un estimador insesgado de σ^2

Distribución de la varianza muestral

- Nos gustaría tener información adicional sobre la varianza muestral y su distribución
 - La distribución de la varianza muestral no es simétrica: tiene asimetría positiva.

Distribución de la varianza muestral

- Si la variable X tiene una distribución normal
 - La distribución de $(n-1)s^2/\sigma^2$ es una χ^2 (chi-cuadrado) con n-1 grados de libertad (χ^2_{n-1})

