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What is the meaning of clustering?

Definition

Cluster analysis or clustering is the task of grouping a set of
objects in such a way that objects in the same group (called a
cluster) are more similar (in some sense or another) to each
other than to those in other groups (clusters).

Wikipedia

Key elements of the definition

Objects

Group (that can be hard or soft).

Similarity.
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Algorithms for clustering

Connectivity-based clustering (hierarchical clustering)

Scotto, M., Alonso, A.M. and Barbosa, S. (2010) Clustering time series of
sea levels: an extreme value approach, Journal of Waterway, Port, Coastal,
and Ocean Engineering, 136, 215–225.

Centroid-based clustering

Maharaj, E.A., Alonso, A.M. and D’Urso, P. (2015) Clustering Seasonal
Time Series Using Extreme Value Analysis: An Application to Spanish
Temperature Time Series, Communications in Statistics - Case Studies and
Data Analysis, 1, 175–191.

(Model) Distribution-based clustering

Alonso, A.M., Berrendero, J.R., Hernández, A. and Justel, A. (2006) Time
series clustering based on forecast densities, Computational Statistics and
Data Analysis, 51, 762–766.

Density-based clustering
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Examples of clustering algorithms

Connectivity-based clustering

These algorithms connect “objects”
to form "clusters" based on their
distance/similarity.

A cluster can be described by the
maximum distance needed to
connect parts of the cluster.

At different distances, different
clusters will form, which can be
represented using a dendrogram.
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Centroid-based clustering

Clusters are represented by a central
“object”, which may not necessarily
be a member of the data set.

k-means

k-mediods or PAM
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(Model) Distribution-based clustering

The clustering model most closely
related to statistics is based on
distribution models.

Clusters can then easily be defined
as objects belonging most likely to
the same distribution/model.
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Density-based clustering

Clusters are defined as areas of
higher density than the remainder of
the data set.

Objects in sparse areas are usually
considered to be noise and border
points.

Andrés M. Alonso Time series clustering



Introduction
Time series clustering by features

Model based time series clustering
Time series clustering by dependence

Introduction to clustering
The problem
Approaches

The problem

Time series clustering problems arise when we observe a
sample of time series and we want to group them into different
categories or clusters.

This a central problem in many application fields and hence
time series clustering is nowadays an active research area in
different disciplines including finance and economics, medicine,
engineering, seismology and meteorology, among others.
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Approaches for time series clustering

Time series clustering by features.

Model based time series clustering.

Time series clustering by dependence.

Liao, T.W. (2005) Clustering of time series data-a survey, Pattern Recognition, 38,
1857–1874.

Aghabozorgi, S., Shirkhorshidi, A.S. and Wah, T.Y. (2015) Time-series clustering
– A decade review. Information Systems 53 16–38.

Caiado, J., Maharaj, E. A., and D’Urso, P. (2015) Time series clustering. In:
Handbook of cluster analysis. Chapman and Hall/CRC.
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Time series clustering by features.
Kakizawa, Y., Shumway, R.H. and Taniguchi, M. (1998) Discrimination and
clustering for multivariate time series, J. Am. Stat. Assoc., 93, 328–340.

Vilar, J.A. and Pértega, S. (2004) Discriminant and cluster analysis for
Gaussian stationary processes: Local linear fitting approach, J.
Nonparametr. Stat., 16, 443–462.

Caiado, J., Crato, N. and Peña, D. (2006) A periodogram-based metric for
time series classification, Comput. Statist. Data Anal. 50, 2668-2684.

Scotto, M., Alonso, A.M. and Barbosa, S. (2010) Clustering time series of
sea levels: an extreme value approach, Journal of Waterway, Port, Coastal,
and Ocean Engineering, 136, 215–225.

D’Urso, P., Maharaj, E.A. and Alonso, A.M. (2017) Fuzzy Clustering of Time
Series using Extremes, Fuzzy Sets and Systems, 318, 56–79.
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Model based time series clustering.
Alonso, A.M., Berrendero, J.R., Hernández, A. and Justel, A. (2006) Time
series clustering based on forecast densities, Computational Statistics and
Data Analysis, 51, 762–766.

Scotto, M.; Barbosa, S. and Alonso, A.M. (2009) Model-based clustering of
Baltic sea-level, Applied Ocean Research, 31, 4–11.

Vilar-Fernández, J.A., Alonso, A.M. and Vilar-Fernández, J.M. (2010)
Nonlinear time series clustering based on nonparametric forecast
densities, Computational Statistics and Data Analysis, 54, 2850–2865.

Time series clustering by dependence.
Alonso, A.M. and Peña, D. (2019) Clustering time series by dependency,
Statistics and Computing, 29, 655–676.

Alonso, A.M.; Galeano, P. and Peña, D. (2019) A robust procedure to build
dynamic factor models with cluster structure, Submitted.
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Packages for time series clustering

TSclust: Package for Time Series Clustering.

Montero, P and Vilar, J.A. (2014) TSclust: An R Package for Time
Series Clustering. Journal of Statistical Software, 62(1), 1-43.

dtwclust: Time Series Clustering Along with
Optimizations for the Dynamic Time Warping (DTW)
Distance.

https:github.comasardaesdtwclust
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Time series clustering by features

We have a set of univariate time series, XXX = {XXX 1,XXX 2, . . . ,XXX n},
where XXX i = (Xi ,1,Xi ,2, . . . ,Xi ,T ) and we want to cluster them.

Starting point

To choose a metric to assess the dissimilarity between two time
series.

This metric plays a crucial role in time series clustering.
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Time series clustering by features

Conceptually most of the dissimilarity criteria proposed for time
series clustering lead to a notion of similarity relying on:

Proximity between raw series data.

Proximity between features of the time series.

Proximity between underlying generating processes.

Raw series data can be considered as naïve features of the
time series.
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Raw data clustering

It consists on measure the
distance, D, between two time
series using an element-wise
approach:

D(XXX i ,XXX j) = d(XXX i −XXX j),

where d is a distance on R
T .

This approach has a drawback
since it requires that the series to
be aligned.
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Raw data clustering
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Euclidean distance matrix:


0 14.1777 12.3613 12.7610
14.1777 0 10.5822 11.3088
12.3613 10.5822 0 8.0949
12.7610 11.3088 8.0949 0



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Raw data clustering

Dynamic time warping distance matrix:



0 43.4941 70.2141 70.1087
43.4941 0 75.1402 78.3575
70.2141 75.1402 0 36.7705
70.1087 78.3575 36.7705 0




Datafile <yesnot.xls>
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Time series clustering by features

Raw data clustering it is an
interesting approach when we
expect the differences in the level
of the series.

Euclidean distance matrix:








0 51.206 48.735 51.184
51.206 0 51.472 50.709
48.735 51.472 0 51.669
51.184 50.709 51.669 0









Two AR(1) and two MA(1) time
series:

0 100 200 300 400 500 600 700 800 900 1000
−5

−4

−3

−2

−1

0

1

2

3

4

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4

5

Andrés M. Alonso Time series clustering



Introduction
Time series clustering by features

Model based time series clustering
Time series clustering by dependence

Introduction
Raw data clustering
Autocorrelation clustering
Spectral domain clustering
Extreme value clustering

Autocorrelation clustering

But, in this case, autocorrelation functions are a “good”
clustering criteria:
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Autocorrelation clustering

Assume that we have two stationary series, XXX and YYY :
{

H0 : ρρρX = (ρX ,1, ρX ,2, . . . , ρX ,m)
′ = ρρρY = (ρY ,1, ρY ,2, . . . , ρY ,m)′

H1 : ρρρX = (ρX ,1, ρX ,2, . . . , ρX ,m)
′ 6= ρρρY = (ρY ,1, ρY ,2, . . . , ρY ,m)′

where ρX ,k and ρY ,k are the corresponding autocorrelations.

We can use the following test statistics:

Tn,m = n
∑m

k=1
(rX ,k − rY ,k )

2,

where rX ,k and rY ,k are the estimated autocorrelations.

Andrés M. Alonso Time series clustering
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Autocorrelation clustering

Tn,m can be used as a distance measure.

It is valid/correct when the series are independent.

But its distribution changes if the series XXX and YYY are
cross-dependent.

So, we need a procedure to derive the distribution of Tn,m in
order to be able to evaluate if a given value tn,m is significantly
different from zero.

Andrés M. Alonso Time series clustering
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Autocorrelation clustering

Subsampling algorithm to obtain the distribution of Tn,m:
1 Let XXX j = (Xj ,Xj+1, . . . ,Xj+l−1) and YYY j = (Yj ,Yj+1, . . . ,Yj+l−1)

with j = 1, 2, . . . , n − l + 1 be the subsamples of l consecutive
observations from XXX and YYY , respectively. We calculate the j-th
subsampling statistic, T (j)

l,m, by:

T (j)
l,m = l

∑m

k=1
(ρ̂Xj ,k − rρ̂j ,k )

2,

where ρ̂Xj ,k and ρ̂Yj ,k are the k -th estimated autocorrelations
using the subsamples XXX j and YYY j , respectively.

2 We calculate gn,l(1 − α) the 1 − α quantile of Ĝn,l(·).
3 We reject H0 if and only if Tn,m > gn,l(1 − α).
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Autocorrelation clustering - Example

Code and description of interest rate series:
Code Description

BME08040203001 Reference rates/Banks/Short term prime rate

BME08040203002 Banks lending rates/Current account overdrafts/Effective
rate

BME08040203003 Banks lending rates/Exceed in credit card/Effective rate

BME08040203005 Reference rates/Saving banks/Short term prime rate

BME08040203006 Savings banks lending rates/Current account over-
drafts/Effective rate

BME08040203007 Savings banks lending rates/Credit account over-
drafts/Effective rate

Andrés M. Alonso Time series clustering
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Autocorrelation clustering - Example

It is clear that series are dependent.
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Autocorrelation clustering - Example

Associated p-value for each pair stationary series:
BME0804020300# 1 2 3 5 6 7

1 - 0.000 0.000 0.155 0.000 0.000
2 - 0.442 0.139 0.524 0.598
3 - 0.065 0.623 0.909
5 - 0.008 0.000
6 - 0.262
7 -

Alonso, A.M. and Maharaj, E.A. (2006) Comparison of time series using
subsampling, Computational Statistics and Data Analysis, 50,
2589–2599.

Datafile <BME.xls>
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Autocorrelation clustering - Example
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Spectral domain clustering

Assume that we have two stationary series, XXX and YYY with
spectral densities

λX =
∑∞

k=−∞

γX ,k exp(−ikω)

and
λY =

∑∞

k=−∞

γY ,k exp(−ikω)

As before, we are interested on testing:
{

H0 : λX (ω) = λY (ω) (0 ≤ ω ≤ π)
H1 : λX (ω) 6= λY (ω)

.
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Spectral domain clustering

Diggle y Fisher (1991) propose to compare the integrated
periodograms:

FX (ωj) =
∑j

i=1
IX (ωi)/

∑m

i=1
IX (ωi),

and
FY (ωj) =

∑j

i=1
IY (ωi)/

∑m

i=1
IY (ωi),

where ωi = 2πi/n, IX (·) is the periodogram, and
m = ⌈(n − 1)/2⌉.

We can use the following test statistics:

Dm = sup |FX (ω)− FY (ω)| or Wm =
∫ π

0 (FX (ω)− FY (ω))
2 dF̄(ω).

Andrés M. Alonso Time series clustering
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Spectral domain clustering

We retake the word classification problem (boat versus goat):

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
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Alonso, A.M., Casado, D., Lopez-Pintado, S. and Romo, J. (2014)
Robust Functional Classification for Time Series, Journal of
Classification, 31, 325–350.
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Extreme value clustering

In some applications, the main interest is the highest (lowest)
level that we can observe in a time series in a given period.

To build dykes you need to know the maximum level of the
sea in the area that you want to protect.

Rising sea levels are of great concern to coastal
communities around the world.

To prevent the effect of temperatures in health, you need
information about the highest temperature.

In finance/insurance, the lowest values correspond to
capital losses.

Andrés M. Alonso Time series clustering
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Extreme value clustering

The Generalized Extreme Value distribution, as the following
form:

G(x) = exp

{
−

[
1 + ξ

(
X − µ

σ

)]
−

1
ξ

}
(1)

defined on {x : 1 + ξ(x−µ
σ ) > 0} where −∞ < µ <∞, σ > 0,

and −∞ < ξ <∞,

The three parameters µ, σ and ξ are the location, scale
and shape parameters, respectively where ξ determines
the three extreme value types.

When ξ < 0, ξ > 0 or ξ = 0 , the GEV distribution is the
negative Weibull, the Fréchet or the Gumbel distribution,
respectively.

Andrés M. Alonso Time series clustering
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Extreme value clustering

GEV distribution fitting

The GEV log-likelihood function presents a difficulty if the
number of extreme events is small.

It is particularly severe when the method of maxima over
fixed intervals is used.

A possible solution is to consider the r -largest values over
fixed intervals (Coles 2001).

Andrés M. Alonso Time series clustering
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Extreme value clustering

GEV distribution fitting

The number of largest values per year, r , should be chosen
carefully.

Small values will produce likelihood estimators with high
variance, whereas large values will produce biased
estimates.

In practice, r is selected as large as possible subject to
adequate model diagnostics.

The validity of the models can be checked through the
application of graphical methods (Reiss and Thomas,
2000).

Andrés M. Alonso Time series clustering



Introduction
Time series clustering by features

Model based time series clustering
Time series clustering by dependence

Introduction
Raw data clustering
Autocorrelation clustering
Spectral domain clustering
Extreme value clustering

Extreme value clustering

The implications of a fitted extreme value model are
usually made with reference to extreme quantiles.

By inversion of the GEV distribution function, the quantile,
xp for a specified exceedance probability p is

for ξ 6= 0, we have xp = µ− σ
ξ

[
1 − (− log(1 − p)−ξ)

]
.

for ξ = 0, we have xp = µ− σ log[− log(1 − p)].

xp is referred to the return level associate with a return
period 1/p.

xp is expected to be exceeded by the annual maximum in
any particular year with probability p.

Andrés M. Alonso Time series clustering
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Extreme value clustering - Example

We consider 52 time series of daily maximum temperatures (in
degrees Celsius, oC) observed in Spain from 1990 to 2004.
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Extreme value clustering - Example

Box-plot of the exceedances (1990-2004) above (below) the
95% (5%) percentile during summer (winter) period.

Cantabria Comunidad de Madrid Región de Murcia
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Extreme value clustering - Example

(a) Two clusters based on GEV estimates for highest temperatures
(b) Two clusters based on GEV estimates for lowest temperatures
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Extreme value clustering - Example

(a) Two clusters based on two sets of GEV estimates
(b) Three clusters based on two sets of GEV estimates

Andrés M. Alonso Time series clustering



Introduction
Time series clustering by features

Model based time series clustering
Time series clustering by dependence

Introduction
Raw data clustering
Autocorrelation clustering
Spectral domain clustering
Extreme value clustering

Extreme value clustering - Example

Means of the 25 and 100 years returns levels with 95%
confidence intervals for the three clusters based on GEV
estimates:

Cluster 25 yr 95% CI 100 yr 95% CI
1 sum 39.12 38.33 39.91 39.61 38.63 40.60

win -0.63 -1.41 0.15 -1.31 -2.40 -0.23
2 sum 43.08 42.33 43.83 43.67 42.68 44.66

win 4.87 4.15 5.59 4.25 3.29 5.20
3 sum 38.37 37.30 39.44 39.63 37.75 41.51

win 8.76 8.03 9.48 8.10 7.13 9.07

Datafile <SpainTemperature.xls>

GEV estimates <SpainTemperatureEstimates.xls>
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Model based time series clustering

We need to define a distance in the space of the parameters of
the models:

Lets assume that {Xt}t∈Z and {Yt}t∈Z follow an
ARIMA(p,d ,q) model with ΦX (B)(1 − B)d Xt = ΘX (B)εX ,t

and ΦY (B)(1 − B)dYt = ΘY (B)εY ,t . Then, we can use:

d(X ,Y ) = (ΞX − ΞY )
′ΣΣΣ−1

Ξ (ΞX − ΞY ),

where ΞX = (φX ,1, φX ,2, . . . , φX ,p, θX ,1, θX ,2, . . . , θX ,q)
′ and

ΞY = (φY ,1, φY ,2, . . . , φY ,p, θY ,1, θY ,2, . . . , θY ,q)
′.
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Model based time series clustering

If the ARIMA(p,d ,q) model is invertible, then we can write
it as AR models: ΠX (B)Xt = εX ,t and ΠY (B)Yt = εY ,t .
Then the following distance can be used (Piccolo, 1990):

d(X ,Y ) =
{∑∞

j=1
(πX ,j − πY ,j)

2}1/2
.

For stationary ARMA(p,q) models, we can define a similar
measure using the moving average representation:
Xt = ΨX (B)εX ,t and Xt = ΨY (B)εY ,t (Galeano y Peña,
2000):

d(X ,Y ) =
{∑∞

j=1
(ψX ,j − ψY ,j)

2}1/2
.
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Model based time series clustering

For stationary and invertible ARMA(p,q) models, Maharaj
(1996) propose a test that can be used as a distance
among models.

ZZZ =

[
XXX
YYY

]
= WWWπππ + εεε,

where WWW =

[
WWW X 000

000 WWW Y

]
, WWW X and WWW Y are T − k × k

matrices of lagged observations observaciones retardadas,
πππ = [πππ′Xπππ

′

Y ]
′, and εεε = [εεε′Xεεε

′

Y ]
′.

E[εεε] = 000, E[εεεεεε′] = V = Σ⊗ IIIn−k , y Σ =

[
σ2

x σxy

σyx σ2
y

]
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Model based time series clustering

Under H0 : πππX = πππY , the following statistics is distributed as χ2
k

(Maharaj, 2000):

D = (RRRπ̂ππ)′
[
RRR(WWWV̂VVWWW )−1RRR′

]
−1

(RRRπ̂ππ),

where V̂VV is the least squared estimator of VVV , π̂ππ is the least

squared estimator of πππ, and RRR = [IIIp
...
...
... −IIIp].

The statistics, D, can be used as a distance measure between
XXX and YYY .
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Model based time series clustering - Example

We use the Maharaj’s approach for demographical data in

Alonso, A.M., Peña, D. and Rodríguez, J. (2013) Predicción de clusters
de series temporales demográficas, MedULA, 22 (1), 25-28.
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Model based time series clustering - Example

Why we cluster models?
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Forecast density clustering

Most of distances or dissimilarity criteria proposed up to this
point rely on the proximity between raw (features) series data,
or proximity between underlying generating processes

In both cases, the classification task becomes inherently static
since similarity searching is governed only by the behavior of
the series over their periods of observation.

In some practical situations, the real interest of clustering is the
future behavior and, in particular, on how the forecasts at a
specific horizon can be grouped.
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Forecast density clustering

The clusters will be different if we
consider:

the models;

the last available observation;

the future values.
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Forecast density clustering

Why prediction clustering?

It reduce the high dimensionality of the problem.

The predictions include information about the past
observations and about the data generating model.
In some problems, the interest is on the future behaviour or
if the series converge or not to some level:

Sustainable development.
(European) convergence of macroeconomic indicators.

Convergence of β-type (see, Barro and Sala-i-Martin, 1995).
Carvalho and Harvey (2005) analyze the short- and
long-term convergence of the per capita income in the Euro
zone.

Emissions of CO2 (Kyoto Protocol).
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Forecast density clustering

Punctual predictions or prediction densities?
Suppose that we have series where the punctual prediction
are similar (or equals).

Example: Prediction of financial asset returns is E [rt ] = 0.

We want to distinguish among the following situations:
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Punctual predictions or prediction densities?
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Forecast density clustering

Steps for clustering procedure

1 Prediction calculation by bootstrap.
2 Dissimilarity matrix calculation by non-parametric kernel

estimators.
For each pair of series, XXX and YYY , we calculate the L2 (L1)
distance among the prediction densities:

Dij =

∫ ∣∣fXT+h(x)− fYT+h (x)
∣∣p dx ,

where p = 1, 2.

3 Finally, we use classical clustering procedures that allows
distances as inputs.
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Forecast density clustering

Prediction step

A general class of autoregressive processes

Let {Xt}t∈Z
a real valued stationary processes such that

Xt = m(XXX t−1) + εt ,

where

{εt} is an i.i.d. sequence

XXX t−1 is a d-dimensional vector of known lagged variables

m(·) is assumed to be a smooth function but it is not restricted to
any pre-specified parametric model.

Of course, other models can be considered.
Andrés M. Alonso Time series clustering
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Forecast density clustering

Prediction step

1 Estimate m using a Nadaraya-Watson estimator m̂g1 .
2 Compute the nonparametric residuals, ε̂t = Xt − m̂g1(XXX t−1).

3 Construct a kernel estimate, f̂ε̃,h, of the density function
associated to the centered residual.

4 Draw a bootstrap-resample ε∗t of i.i.d. data from f̂ε̃,h.
5 Define the bootstrap series X∗

t , by X∗
t = m̂g1(XXX

∗
t−1) + ε∗t .

6 Obtain the bootstrap autoregressive function, m̂∗
g2

, using the
bootstrap sample (X∗

1 , . . . ,X
∗
T ).

7 Compute bootstrap prediction-paths by X∗
t = m̂∗

g2
(XXX ∗

t−1) + ε∗t , for
t = T + 1, . . . ,T + H, and X∗

t = Xt , for t ≤ T .
8 Repeat Steps (1)-(7) a large number B of times.

Andrés M. Alonso Time series clustering
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Dissimilarity calculation step

In practice, distances Dp,XY are consistently approximated by
replacing the unknown fXT+b

by kernel-type density estimates

f̂XT+b
constructed on the basis of bootstrap predictions, that is

D̂∗

p,XY =

∫ ∣∣∣f̂X∗

T+b
(x)− f̂Y∗

T+b
(x)

∣∣∣
p

dx , i , j = 1, . . . , s,

for p = 1,2.
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Clustering step

Application of a agglomerative hierarchical cluster algorithm

Once the pairwise dissimilarity matrix D̂∗

p =
(

D̂∗

p,XY

)
is

obtained, a standard agglomerative hierarchical clustering
algorithm based on D̂∗

p is carried out.
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Forecast density clustering - Example

Dataset: Emissions of CO2 in 24 industrialized countries.
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Forecast density clustering - Example

Dendrogram based on the last available observation
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Forecast density clustering - Example

Dendrogram based on the last available observation
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Forecast density clustering - Example

Dendrogram based on the punctual prediction for 2012
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Forecast density clustering - Example

Dendrogram based on the punctual prediction for 2012
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Forecast density clustering - Example

Dendrogram based on the prediction densities for 2012
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Multivariate models with cluster structure

Dynamic factor models:

When the number of series is large, VARMA models are hard to
build or even unfeasible.

Dynamic Factor Models can deal with large sets of time series.
Engle and Watson (1981), Peña and Box (1987), Forni et al
(2000), Bai and Ng (2002), Peña and Poncela (2006), Hallin
and Liska (2007), Alonso et al (2011), Lam and Yao (2012),
Forni et al (2015, 2016,2017).

For large panels of time series we often found group structure
and different factors affecting to different groups.

Hallin and Liska (2011), Su et al (2014) and Ando and Bai
(2016, 2017).
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Multivariate models with cluster structure

Dynamic factor models with cluster structure:

Let xt = (x1t , . . . , xmt )
′ be an m-dimensional vector time series.

xt = P0f0t +
∑k

i=1
Pi fit + nt ,

where
f0t = (f01t , . . . , f0r0 t )

′ is a r0-dimensional vector of common
factors, P0 is a m × r0 factor loading matrix and k is the number
of clusters.

fit = (fi1t , . . . , firi t)
′ be a ri -dimensional vector of group-specific

factors corresponding to the ith cluster and Pi is the m × ri factor
loading of these specific factors. The columns of the matrix Pi

are of the form (0, . . . , 0, pj1, . . . , pjmi , 0, . . . , 0), for j = 1, . . . , ri .
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Multivariate models with cluster structure

Ando, T. and Bai J. (2016) Panel data models with grouped factor
structure under unknown group membership, Journal of Applied
Econometrics, 31, 163–191.

Ando, T. and Bai J. (2017) Clustering huge number of financial
time series: A panel data approach with high-dimensional
predictor and factor structures, Journal of the American
Statistical Association, in press.

Implemented in JAE1.R, JAE2.R and JASA.R
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Multivariate models with cluster structure

We should to provide the number of clusters, k , the
number of common factors, r , and the number of
group-specific factors, ri .

Ando, T. and Bai J. (2017) provides a procedure for
selecting, k , r and ri but it is computationally intensive.

k = 1, 2, . . . ,K .
r = 0, 1, . . . ,R.
ri = 1, . . . ,R.

An information criteria is used to select those parameters.
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Multivariate models with cluster structure - Example

Dataset: Mortality rates by single age, Spain 1908 - 2015.
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Multivariate models with cluster structure - Example

We use k = 3, r = 1 and ri = 1:
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Time series clustering by dependence

Up to this point, the classification task becomes inherently
univariate since similarity searching is governed only by the
behavior of each series but doesn’t take into account the
cross-dependency among the series.

Suppose that we have stationary (standardized) time series.
Define rxx (h) = E(xitxi ,t−h) and rxy (h) = E(xityj ,t−h).

We can build a measure of the dependency as follows:

Let B(h) =
[

rxx (h) rxy (h)
ryx (h) ryy (h)

]
.
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Time series clustering by dependence

Then the matrix

Bk =




B(0) B(1) · · · B(k)
B(−1) B(0) · · · B(k − 1)

...
...

. . .
...

B(−k) B(−k + 1) · · · B(0)




is the covariance matrix of the vector stationary process
Zt = (xt , yt , xt−1, yt−1, ...., xt−k , yt−k )

T .
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A dissimilarity measure based on mutual dependency

A convenient measure of dissimilarity based on their joint
dependency is

D(X ,Y ) = |Bk |
1/2(k+1)

Notice that 0 ≤ |Bk | ≤ 1 with equality to one when Bk is
diagonal.

This measure will be non-negative, symmetric and will be
zero if x = y .

The dissimilarity will reach the largest value, one, when the
two series are independent, and will be zero if they are
identical.
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A dissimilarity measure based on mutual dependency

Note that

|Bk | =
∣∣∣R(x)k

∣∣∣
∣∣∣R(y)k − R(y , x)k R−1(x)k R(x , y)k

∣∣∣

It should be noticed that if x is integrated then |R(x)k | will be
close to zero and the product will be small whatever the second
term is.

This suggest the alternative measure

RD(X ,Y ) = |Bk |
1/2(k+1) /(|R(x)k | · |R(y)k |)

1/2(k+1),

which has not this limitation.
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The clustering procedure:

We use the dissimilarity defined by

RD(X ,Y ) = |Bk |
1/2(k+1) /(|R(x)k | · |R(y)k |)

1/2(k+1)

as input of an agglomerative hierarchical clustering.
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The clustering procedure

The nonlinear features of some time series, as for instance,
volatility and nonlinear behavior are not indicated by the
measures such as simple or partial autocorrelation.

We know that these nonlinear features can be shown by the
autocorrelation of the absolute values or the squared residuals
of a linear fit.

Suppose that we fit an AR(p) model to the series where p is
chosen by the AIC or BIC criterion and we obtain:

et = yt − π̂1yt−1 − ...− π̂pyt−p.
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Time series clustering by dependence
Synthetic example

Dependent series

The models for the three populations are:
1 AR(1) X (1,i)

t = 0.9X (1,i)
t−1 + ǫ

(1,i)
t with i = 1, 2, ..., 5.

2 AR(1) X (2,i)
t = 0.2X (2,i)

t−1 + ǫ
(2,i)
t with i = 1, 2, ..., 5.

3 AR(1) X (3,i)
t = 0.2X (3,i)

t−1 + ǫ
(3,i)
t with i = 1, 2, ..., 5.

That is, the second and the third models have the same
autocorrelation structure.

The five scenarios differs in the dependence structure of
the innovations. In the following, we present the
autocorrelation matrices of (ǫ(1,1)t , ǫ

(1,2)
t , ..., ǫ

(3,5)
t ).
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Time series clustering by dependence
Synthetic example

Scenario D.1

RD.1 =



















































1 .5 0 0 0 0 0 0 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0 0 0 0 0 0 0

1 .5 0 0 0 0 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0 0 0 0 0

1 .5 0 0 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0 0 0

1 .5 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0

1 .5 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0
1 0 0 0

1 0 0
1 0

1



















































Andrés M. Alonso Time series clustering



Introduction
Time series clustering by features

Model based time series clustering
Time series clustering by dependence

Introduction
A dissimilarity measure based on mutual dependency
The clustering procedure
Case-studies with real data

Time series clustering by dependence
Synthetic example
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Time series clustering by dependence
Synthetic example
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Time series clustering by dependence
Synthetic example

Scenario D.3
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Time series clustering by dependence
Synthetic example

Scenario D.4
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Time series clustering by dependence
Synthetic example

Scenario D.5
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Synthetic example: Scenarios D.1 - D.5
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Synthetic example: Scenarios D.1 - D.5

The following results are the means of the Gravilov index from 10000
replicates for the sets A and B with T = 100.

The similarity index used in Gavrilov et al. (2000) compares two
different cluster partitions, C = (C1, . . . ,Ck ) and C′ = (C′

1, . . . ,C
′
k ′)

using the following formulas:

Sim(Ci ,C
′
j ) = 2

#(Ci
⋂

C′
j )

#(Ci ) + #(C′
j )
,

and
Sim(C,C′) = k−1

∑k

i=1
max1≤j≤k ′ Sim(Ci ,C′

j ).

The closer to one the index, the higher is the agreement between the
two partitions.
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Synthetic example: Scenario D.1
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Synthetic example: Scenario D.2
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Synthetic example: Scenario D.3
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Synthetic example: Scenario D.4
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Synthetic example: Scenario D.5
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Synthetic example: Scenarios D.1 - D.5

The following results are the means of the Gravilov index from 10000
replicates for the set D using the complete and single linkage

Method D.1 D.2 D.3 D.4 D.5
SAC 0.443 0.643 0.717 0.665 0.665
PAC 0.491 0.666 0.814 0.678 0.689

D 0.698 0.664 1.000 0.842 1.000
RD 0.527 0.654 1.000 0.865 1.000

Method D.1 D.2 D.3 D.4 D.5
SAC 0.478 0.666 0.635 0.667 0.667
PAC 0.474 0.666 0.637 0.667 0.667

D 0.923 0.830 1.000 0.988 1.000
RD 0.934 0.843 1.000 0.993 1.000

ABC - 0.612 - 0.698 0.840
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Synthetic example: Scenarios D.1 - D.5

Main conclusions
The results of the univariate methods are similar and they don’t
change much across linkage methods.

Notice that here a Gravilov index around 0.667 corresponds to
approximately separate the first population from the third one in
scenarios D.2, D.4 and D.5.

For scenarios D.3, D.4 and D-5 where there are some “strong”
clusters, the complete linkage for both multivariate measures
improve the univariate measures.

For all scenarios, the single linkage and RD is preferable to other
considered alternatives.
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Case-study with real data- I

Spanish mortality rates

We consider the Spanish mortality rates by age (0 – 90 years)
for both genders taken from the Human Mortality Database
(http://www.mortality.org).

The data is available from 1908 to 2015. We skip the period
1908 – 1949.

This allows us to use the period 1950 – 2000 as a model
adjustment period and 2001 – 2015 as a test period in the
forecasting exercise.
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Case-study with real data - I

Spanish mortality rates
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Case-study with real data: Data description

Spanish mortality rates

It is clear that these series has an strong negative trend. In fact they
share a common trend.
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Case-study with real data: Data description

Lee-Carter model

It is a well-known model which looks at the dependence between
mortality time series. It relates the mortality rates by age with a single
unobservable factor:

ln(MRx,t ) = ax + bx kt + εx,t

kt = c + kt−1 + ηt
,

where ax and bx are parameters which depend on age, x ; kt is the
unobservable factor which picks up the general characteristics of
mortality in the year t , and εx,t are the age-specific factors.

We will cluster the series of age-specific factors, εx,t .
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Case-study with real data: Factors & Loadings

Spanish mortality rates
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Spanish mortality rates: Clustering results

Spanish mortality rates

At the age-specific factors, we find two clusters and some
“independent” series.
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Spanish mortality rates: Clustering results

Here, we will compare the forecasting performance of three
models:

A factorial model with a single unobservable factor, as in
Lee-Carter (1992).

A factorial model with two unobservable factors, as in
Alonso, Peña and Rodríguez (2005).

A factorial model with two unobservable factors where:
the first factor is estimated using all series.
the second factor is estimated using the two obtained
clusters.
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Case-study with real data: Factors & Loadings

Spanish mortality rates
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Mean absolute prediction errors
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We observe improvements in almost all ages

Andrés M. Alonso Time series clustering



Introduction
Time series clustering by features

Model based time series clustering
Time series clustering by dependence

Introduction
A dissimilarity measure based on mutual dependency
The clustering procedure
Case-studies with real data

Mean absolute prediction errors
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We observe improvements in ages where two factors is worse than one factor
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Mean absolute prediction errors
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But also in ages where two factors is better than one factor
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Case-study with real data- II

Spanish electricity prices

We study the 24 series of hourly prices for the Iberian electricity
market from January 2014 to May 2016.
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Case-study with real data- II

Spanish electricity prices - Translated for better visualization.
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Spanish electricity prices: Clustering results

There are three clusters:

Sleeping hours

Working hours

Arriving & staying at
home.
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Mean absolute prediction errors
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We observe improvements in all hours for one-day-ahead forecast

Andrés M. Alonso Time series clustering



Introduction
Time series clustering by features

Model based time series clustering
Time series clustering by dependence

Introduction
A dissimilarity measure based on mutual dependency
The clustering procedure
Case-studies with real data

Time series clustering by features.
Raw data.
Autocorrelation.
Spectral density.
Extreme value behaviour.

Model based time series clustering.
Forecast based clustering.
Model with cluster structure.

Time series clustering by dependence.
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