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Goodness-of-Fit Tests

An Adaptive Goodness-of-Fit Test

AUREA GRANE1 AND JOSEP FORTIANA2

1Dpto. Estadística, Universidad Carlos III Madrid, Madrid, Spain
2Department d’Estadística, Universitat de Barcelona, Barcelona, Spain

In Fortiana and Grané (2003), we introduced the statistic Qn, based on Hoeffding’s
maximum correlation, as a general-purpose goodness-of-fit test of uniformity. It
admits an expansion along a countable set of orthogonal axes, originating a
sequence of statistics. Linear combinations of a given number p of terms in this
sequence have easy-to-compute probability distributions, either the exact ones for a
finite sample or their normal asymptotic approximations for a large sample. In this
article we develop an algorithm for tailoring a statistic within this class of linear
combinations to test uniformity with optimal power against a specific alternative or
family of alternatives.

Keywords Decomposition of test statistics; Goodness-of-fit; Maximum
correlation; Tests of uniformity.

Mathematics Subject Classification 62G10; 62G30; 62E15.

1. Introduction

Most goodness-of-fit statistics can be regarded as measures of proximity between
two distributions: empirical and hypothesized. The family of tests we are
concerned with in this article is based on Hoeffding’s maximum correlation
between cumulative distribution functions (cdf’s) F1 and F2, henceforth denoted
by �+�F1� F2�, defined as the maximum of the correlation coefficients of bivariate
distributions having F1 and F2 as marginals. Since �+�F1� F2� equals 1 if and only if
F1 = F2 (almost everywhere) up to a scale and location change, it is adequate to our
purpose. In Fortiana and Grané (2003) we defined and studied the properties of

Qn =
sn√
1/12

�+�Fn� FU ��

where Fn is the empirical cdf for n iid real-valued random variables, sn is the
empirical standard deviation, and FU is the probability distribution function of a
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1142 Grane and Fortiana

�0� 1� uniform random variable, as a test statistic for H0 � F = FU (also for H0 �
F = F0, where F0 is a fully specified continuous probability distribution function,
case 0 in Stephens, 1986). We found that Qn has good properties as a goodness-
of-fit test: since it is an L-statistic, it is possible to find its exact distribution
under the null hypothesis for small samples and, additionally, it is asymptotically
normally distributed. The test based on Qn can advantageously replace those of
Kolmogorov–Smirnov, Cramér-von Mises, and Anderson–Darling for a wide range
of alternatives. We also proved the following identity:

Qn =
24

√
2

�2

∑
j≥0

	n�2j+1

�2j + 1�2
�

where the sequence 
	nj�j≥0 appears as a decomposition of this test, analogous
to those studied by Anderson and Darling (1952, 1954), Durbin and Knott
(1972, 1975), and Stephens (1974). Also, 	nj is the jth Fourier coeffcient of
the pseudoinverse of the empirical distribution function F−

n for an orthonormal
sequence, 
	j�t��j≥0, in L2�0� 1� (see Cuadras and Fortiana, 1993; Fortiana and
Cuadras, 1997; Fortiana and Grané, 2003 for details). In the present article, we seek
to improve the performance of Qn for an alternative or family of alternatives by
choosing a linear combination of a finite number p of terms in the sequence 
	nj�j≥0

that maximizes power against the given alternative. Even if the best Neyman–
Pearson power is not attained, the resulting test keeps the computational advantages
of Qn.

In Sec. 2 we define and list properties of the class of statistics we are interested
in. In Sec. 3 we express the problem of power optimization in terms of certain
quadratic forms depending on moments of the order statistic. As an example of
family of alternatives we use the �0� ��-uniform distributions. Section 4 contains a
method for finding the statistic in a generic case, including an algorithm to perform
the actual computation, with some numerical illustrations. Finally, Sec. 5 includes
power computations, as well as a general discussion of results.

2. Definition of the Statistic

Let F be a probability distribution function with finite second order moment and let
Fn be the empirical cdf of n i.i.d. random variables with distribution F , x1� 
 
 
 � xn.
With the orthonormal (in L2�0� 1�) system 
	0 = 1� 	j�t� =

√
2 cos�j�t�� j ≥ 1�, we

define the statistics:

	nj ≡ 	nj�F� =
∫ 1

0
F−
n �t�	j�t�dt� j ≥ 0� (1)

where F−
n is the pseudoinverse of Fn, defined as F−

n �t� = inf
x ∈ � � Fn�x� ≥ t�. This
sequence was thoroughly studied in Fortiana and Grané (2003). Explicitly, in terms
of the order statistic x = �x�1�� 
 
 
 � x�n��

′,

	n0 = x̄n�

	nj =
√
2

j�

n∑
i=1

(
sin

ij�

n
− sin

�i− 1�j�
n

)
x�i�� j ≥ 1� (2)
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An Adaptive Goodness-of-Fit Test 1143

and their expectations under H0 are given by

E�	n0� =
1
2
�

E�	nj� =



0� if j is even�

−
√
2

j�

1
n+ 1

cot
(
j�

2n

)
� if j is odd�

� j ≥ 1
 (3)

In Fortiana and Grané (2003, Eq. (3), p. 118), the 	nj statistics were defined in a
slightly different way. Here we have included 	n0 and changed the sign of 	nj , for
j ≥ 1. We will consider all statistics of the form

T = T��̃� = ∑
j≥0

�̃	nj� (4)

where 
�̃j� ∈ �1� is a sequence of real numbers. T is an L-statistic,

T = w′x =
n∑

i=1

wix�i��

with coefficients

wi =
�̃0
n

+
√
2
�

∑
j≥1

�̃j

j

(
sin

ij�

n
− sin

�i− 1�j�
n

)



The �1 condition imposed on 
�̃j� ensures that each wi, 0 ≤ i ≤ n, is the sum
of an absolutely convergent sequence. Moreover, due to the periodicity j	nj =
�j + 2n�	n�j+2n, j ≥ 1, definition (4) is equivalent to

T = T��� =
2n∑
j=0

�j	nj� (5)

where

�0 = �̃0� �j

�∑
k=0

�̃2nk+j

j

j + 2nk
� for 1 ≤ j ≤ 2n


Note that this is an absolutely convergent sum. We will use Tp ≡ Tp�L�, the result of
truncating (5) at j = p, where L = ��0� 
 
 
 � �p�

′. Since in practical situations p will
be much smaller than n, henceforth we assume p < n.

In matrix notation

Tp�L� = w′x = L′�S′
p�I −N�′x� (6)
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1144 Grane and Fortiana

where L = ��1� 
 
 
 � �p�
′, � = diag�1/n�

√
2/��

√
2/�2��� 
 
 
 �

√
2/�p���,

I −N =




1 0 · · · 0
−1 1 · · · 0


 
 


 
 


0 · · · −1 1


 � Sp =



1 s11 s12 · · · s1p
2 s21 s22 · · · s2p















 
 






n sn1 sn2 · · · snp


 �

where sij = sin�ij�/n�, 1 ≤ i ≤ n, 1 ≤ j ≤ p.
Given an alternative cdf F1, we select L in order to maximize power for testing

H0 � F = FU , vs. H1 � F = F1. Clearly, the resulting test is less powerful than the
optimal (Neyman–Pearson), but on the other hand, its distribution under the null
hypothesis is easily computed, both for large samples, applying the asymptotic
theory of L-statistics, and for small samples, with the exact distribution, as described
in Fortiana and Grané (2003).

From formula (2.9) in Ramallingam (1989), it is also possible to get explicit
expressions for the moments under H0:

�r = E�T r� = r!n!
�n+ r�!

n∏
i=2

1
bi

n∑
i=2

br+1
i �

in particular,

�1 =
1

n+ 1

∑n
i=2 b

2
i∏n

i=2 bi
�

where

bi =
n∑

k=i

wk =
n− i+ 1

n
�0 −

√
2
�

p∑
j=1

�j

j
sin

�i− 1�j�
n




3. Computation and Optimization of the Power Function

It is possible to use a one-sided test for a fixed alternative F1, since it may be proved
that when H1 is true Tp tends to its upper tail if var�F1� > 1/12 and to its lower
tail otherwise. In general, however, for a family of alternatives we must consider the
two-sided test. Henceforth this will be our assumption.

Let FU be the �0� 1�-uniform distribution and F1, also with support on �0� 1�,
belonging to a family of alternatives. From the general theory of L-statistics
(see, e.g., Stigler, 1974, or Ch. 19 of Shorack and Wellner, 1986) the asymptotic
distribution of Tp�L� is normal. For a given significance level � ∈ �0� 1�, we are
looking for critical values c1� c2 ∈ �, such that

P�Tp�L� > c1 �H0� = �/2� P�Tp�L� < c2 �H0� = �/2


Since the distribution of Tp�L� under H0 is centered at �0 = E�Tp�L� �H0�, we take
c1� c2 symmetric with respect to �0, that is, c1 = �0 + c�/2�0, c2 = �0 − c�/2�0, where
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An Adaptive Goodness-of-Fit Test 1145

�2
0 = var�Tp�L� �H0� and c�/2 is the �1− �/2�-quantile of the N�0� 1� distribution.

The power,

P�Tp�L� > c1 �H1�+ P�Tp�L� < c2 �H1��

is asymptotically approximated by

��L� = 1− PZ

[(
�0 − �1

�1

− c�/2
�0

�1

�
�0 − �1

�1

+ c�/2
�0

�1

)]
�

where �1 = E�Tp�L� �H1�, �2
1 = var�Tp�L� �H1�, and Z ∼ N�0� 1�. Due to the

symmetry of the normal distribution, �0 − �1 can be replaced with ��0 − �1�, hence

��L� = 1− PZ

{([
a�L�

c�L�

]1/2

−
[
b�L�

c�L�

]1/2

�

[
a�L�

c�L�

]1/2

+
[
b�L�

c�L�

]1/2)}
�

in terms of the following quadratic forms:

a�L� = ��0 − �1�
2 = L′AL� where A = D′�M0 −M1��M0 −M1�

′D�

b�L� = c2�/2�
2
0 = L′BL� where B = c2�/2D

′�0D� (7)

c�L� = �2
1 = L′CL� where C = D′�1D�

where Mi = E�x �Hi�, �i = Var�x �Hi�, i = 0� 1, and D = �I −N�Sp�. The
expectation and variance of the order statistic under the null hypothesis are given
by formula (10) below. See Sec. 4 to compute them under the alternative hypothesis.

As stated in the previous section, we want to find L such that the power is
maximized. Since ��L� is invariant when L is multiplied by an arbitrary constant,
we assume c�L� = 1, thus we have to compute the extremes of

��L� = 1−�
(
a�L�1/2 + b�L�1/2

)+�
(
a�L�1/2 − b�L�1/2

)+ ��c�L�− 1�� (8)

where � is the standard normal probability distribution function and � is a
Lagrange multiplier.

Degenerate case. If a�L� = 0, the expectation of Tp�L� is the same under both
hypotheses, then the asymptotically approximated power function is

��L�− 1− PZ

{(
−

[
b�L�

c�L�

]1/2

�

[
b�L�

c�L�

]1/2)}
�

with the restriction c�L� = 1, and (8) can be written as

��L� = 2− 2�
(
b�L�1/2

)+ ��c�L�− 1�


Differentiating with respect to L and equating to zero, we obtain an eigenvalue-type
problem:

	�L�BL = �CL�
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1146 Grane and Fortiana

where 	�L� = b�L�−1/2�
(
b�L�1/2

)
, and � is the standard normal probability density

function.

General case. If a�L� 
= 0, then differentiating (8) with respect to L and
equating to zero, we obtain the following eigenvalue-type problem:

���L�A + 	�L�B�L = �CL� (9)

where

��L� = a�L�−1/2��+�L�− �−�L���

	�L� = b�L�−1/2��+�L�+ �−�L���

�+�L� = �
(
a�L�1/2 + b�L�1/2

)
�

�−�L� = �
(
a�L�1/2 − b�L�1/2

)



The degenerate case appears for ��L� = 0.

In order to compute L we change to the new variable u = C1/2L, and let E =
C−1/2AC−1/2, F = C−1/2BC−1/2, and G�u� = ��u�E+ 	�u�F, where ��u�, 	�u� denote
the quantities ��L�, 	�L� as defined in (9) in terms of the new variable u. Given an
initial u, we compute the set of eigenvectors/eigenvalues of G�u�. The new u will be
the eigenvector such that ��u� is maximum. This process is iterated to stationarity.
The last step is to recover and normalize L. The result is rather robust, leading to
a single maximum with a small number of iterations for a widely diverse choice of
the initial u. A Matlab program implementing this computation may be requested
from the authors.

3.1. Example: Scale Alternatives

We consider an alternative distribution belonging to the family U�0� ��, uniform on
�0� ��, with � > 0. The vector of expectations M0 and the matrix of covariances �0 of
the order statistic x�1�� 
 
 
 � x�n� obtained from n random variables iid ∼ U�0� 1� are

M0 =
1

n+ 1
�1� 2� 
 
 
 � n�′� �0 = �vij�1≤i�j≤n� (10)

where

vij =
1

�n+ 2��n+ 1�2
��n+ 1�min
i� j�− ij��

(see, e.g., David, 1981) and those of the order statistic obtained from n iid ∼ U�0� ��
random variables are M1 = �M0, �1 = �2�0. Hence (7) becomes

a�L� = �1− ��2L′AL� where A = D′M0M
′
0D�

b�L� = c2�/2L
′BL� where B = D′�0D�

c�L� = �2L′BL
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An Adaptive Goodness-of-Fit Test 1147

We have to maximize

��L� = 1− PZ

(
1− �

�

(
L′AL
L′BL

)1/2

− c�/2

�
�
1− �

�

(
L′AL
L′BL

)1/2

+ c�/2

�

)
�

under the restriction L′BL = 1, which is equivalent to maximizing the quotient
L′AL/L′BL, and also to finding the eigenvector of maximum eigenvalue in AL =
�BL with the restriction L′BL = 1, i.e.,

D′M0M
′
0DL = �D′�0DL

with the restriction L′D′�0DL = 1. Note that the left-hand side matrix has unit rank,
hence there is only one eigenvector with a non null eigenvalue. Additionally, this
solution does not depend on the parameter �.

As a numerical example, for a sample size n = 20, a significance level � = 0
05
and p = 4,

Tp = 0
3554	n0 − 0
4447	n1 + 0
4985	n2 − 0
4373	n3 + 0
4860	n4


In a practical situation, Tp should be expressed directly in terms of the observed
order statistic using (6). The critical values of the test based on Tp are

c1 = 0
33974� c2 = 0
26608


We have compared Tp with the statistic Qn obtained in Fortiana and Grané (2003),
with the Kolmogorov–Smirnov statistic Dn and the Cramér-von Mises statistic W 2

n .
Figure 1 shows the power curves for the tests based on these statistics. These curves
are plotted from 20 computed points, for each of which we have generated N = 1000

Figure 1. Power functions for scale alternatives.



D
ow

nloaded By: [Sw
ets C

ontent D
istribution] At: 17:42 16 February 2007 

1148 Grane and Fortiana

samples of size n = 20, and we have estimated the power as the relative frequency
of values in the critical region. We allowed � to take values below and above 1, thus
obtaining a two-sided power curve.

4. Generic Alternatives

If for a given alternative distribution we know how to compute M1 and �1 in
Eq. (7), we can proceed as described in Sec. 3. Here we develop an algorithm to
compute the Tp statistic for an alternative cdf F such that its pseudoinverse F−

admits the expression:

F−�t� = �0 +
√
2

q∑
k=1

�k cos�k�t�� (11)

where �k are real numbers. An arbitrary cdf can be approximated by taking the
first q terms of the corresponding Fourier series. The pseudoinverse F− appears in
the formulas of the moments of L-statistics, (18) and (19) see below, hence it seems
natural to expand F− instead of F itself or its density. M0 and �0 in (7) are the same
as in (10). The entries in M1 are given by

E�x�i� �H1� = i

(
n
i

) ∫ 1

0
F−�t�ti−1�1− t�n−idt

= i

(
n
i

)
�0Beta�i� n− i+ 1�+ i

(
n
i

)√
2

q∑
k=1

(
�k

∫ 1

0
cos�k�t�ti−1�1− t�n−i dt

)

= �0 +
√
2

q∑
k=1

�kF2�3

({
i+ 1
2

�
i

2

}
�

{
1
2
�
n+ 1
2

�
n+ 2
2

}
�
−k2�2

4

)
� 1 ≤ i ≤ n�

where

Fp�q�a� b� z� =
�∑
k=0

�a1�k · · · �ap�k

�b1�k · · · �bq�k
zk

k!
is the generalized hypergeometric function with parameters a = 
a1� 
 
 
 � ap�,
b = 
b1� 
 
 
 � bq�, for p ≥ 0, q ≥ 1, and �r�k denotes the Pochhammer symbol, that is

�r�k = r�r + 1� · · · �r + k− 1� = ��r + k�/��r��

see Wolfram (1996, Sec. 3.2.10). In general, an exact formula to compute �1 will
not be available, instead we can determine matrix C from the following asymptotic
approximation.

Proposition 4.1. Let Tp = Tp�L� be the statistic defined in (6), in which the order
statistic has been obtained from n iid random variables with distribution (11). We have
the following convergences in law

√
n�Tp − �n�

�−−→
n→�

N�0� �2
1�� (12)

√
n
�Tp − �n�

�n

�−−→
n→�

N�0� 1�� (13)
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where

�n = �0�0 +
min�p�q�∑

j=1

�j�j
2n
j�

sin
(
j�

2n

)
(14)

�2
1 = lim

n→� �2
n� �2

n =
p∑

j=0

p∑
l=0

�j�l�n�jl� �n�jl = 2�2�nj�nl

q∑
k=1

q∑
m=1

km�k�mIjklm� (15)

where �n0 = 1, and �nj =
√
2�2n/�j��� sin�j�/�2n��, for 1 ≤ j ≤ p,

Ijklm = 1
8�2

{
1

�k+ j�2
��m−l�k+j + �m+l�k+j�

}
� for k = j�

Ijklm = 1
8�2

{
1

�k− j�2
��m−l�k−j + �m+l�k−j�+

1
�k+ j�2

��m−l�k+j + �m+l�k+j�

}
�

for k 
= j, and � is Kronecker’s delta.

Proof. From (2) and (5),

Tp =
1
n

n∑
i=1

[
�0 +

p∑
j=1

�j
2n
j�

sin
(
j�

2n

)√
2 cos

�2i− 1�j�
2n

]
x�i�

and, defining,

Jn��t� =
p∑

j=0

�j�nj cos�j�t�� (16)

where

�n0 = 1� �nj =
√
2
2n
j�

sin
(
j�

2n

)
� 1 ≤ j ≤ p� (17)

the statistic, Tp can be written as

Tp =
1
n

n∑
i=1

Jn�

(
1− 1/2

n

)
x�i��

where Jn� is a continuous and bounded a.e. �F−� function. The natural centering
constant �n, (see p. 661 of Shorack and Wellner, 1986), defined as

�n =
∫ 1

0
Jn��t�F

−�t�dt� (18)

is equal to

�0�0 + �0
√
2

q∑
k=1

�k

∫ 1

0
cos�k�t�dt + �0

p∑
j=1

�j�nj

∫ 1

0
cos�j�t�dt

+√
2

p∑
j=1

�j�nj

q∑
k=1

�k

∫ 1

0
cos�j�t� cos�k�t�dt�
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which is (14). Similarly,

�2
n =

∫ 1

0

∫ 1

0
Jn��s�Jn��t��min�s� t�− st�dF−�s�dF−�t�

= 2�2
p∑

j=0

q∑
k=1

p∑
l=0

q∑
m=1

�j�l�nj�nlkm�k�mIjklm� (19)

where

Ijklm =
∫ 1

0

∫ 1

0
K�s� t� cos�j�s� sin�k�s� cos�l�t� sin�m�t�dt ds�

where K�s� t� = min�s� t�− st, 0 ≤ s, t ≤ 1. Defining

�n�jl = 2�2�nj�nl

q∑
k=1

q∑
m=1

km�k�mIjklm�

we have that

�2
n =

p∑
j=0

p∑
l=0

�j�l�n�jl


Observing that the eigenvalues and orthonormalized eigenfunctions of the integral
operator with kernel K�s� t� are, respectively,

�j =
1

�j��2
� fj�t� =

√
2 sin�j�t�� 0 ≤ t ≤ 1� j ∈ ��

(see pp. 213–214 of Shorack and Wellner, 1986), we obtain

Ijklm =
∫ 1

0

∫ 1

0
K�s� t�

1
2
�sin��k− j��s�+ sin��k+ j��s��

× 1
2
�sin��m− l��s�+ sin��m+ l��s��dt ds

= 1
4

∫ 1

0

∫ 1

0
K�s� t�

1√
2
�fk−j�s�+ fk+j�s��

1√
2
�fm−l�t�+ fm+l�t��dt ds

= 1
8

∫ 1

0
�fm−l�t�+ fm+l�t��

∫ 1

0
K�s� t��fk−j�s�+ fk+j�s��ds dt


For k 
= j,

Ijklm = 1
8

∫ 1

0
�fm−l�t�+ fm+l�t��

[
1

�k− j�2�2
fk−j�t�+

1
�k+ j�2�2

fk+j�t�

]
dt

= 1
8�2

{
1

�k− j�2
��m−l�k−j + �m+l�k−j�+

1
�k+ j�2

��m−l�k+j + �m+l�k+j�

}
�
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and for k = j,

Ijklm = 1
8�2

{
1

�k+ j�2
��m−l�k+j + �m+l�k+j�

}
�

where � is Kronecker’s delta. To compute �2
1 = limn→� �2

n, substitute

J��t� = lim
n→� Jn��t� = �0 +

√
2

p∑
j=1

�j cos�j�t��

for Jn� inside the integral in (19), which can be done because Jn� is a continuous and
bounded a.e. �F−� function. Then,

�2
1 =

p∑
j=0

p∑
l=0

�j�l�jl�

where

�jl = lim
n→� �n�jl = 4�2

q∑
k=1

q∑
m=1

km�k�mIjklm


The convergence of (12) is obtained applying Theorem 1, pp. 664–665 of
Shorack and Wellner (1986). The convergence of (13) is immediate from (12) and
the fact that �2

1 = limn→� �2
n. �

Comparing the expression for c�L� = �2
1 = L′CL in (7) with (15), we see that

the entries in C are either �n�jl or the limit �jl = limn→� �n�jl. Some computational
examples suggest that a better approximation is obtained with �n�jl.

4.1. Some Examples

To illustrate the method we have choosen four parametric families of alternative
distributions with support on �0� 1�. We have choosen them so that either the mean
or the variance differs from those of the null hypothesis, the uniform distribution,
which in each case is obtained for a particular value of the parameter. They are
defined by the following probability distribution function.

A1. Lehmann alternatives,

F��x� = x�� 0 ≤ x ≤ 1� � > 0


A2. Centered distributions having U -shaped probability density function, for 	 ∈
�0� 1�, or wedge-shaped probability density function, for 	 > 1,

F	�x� =



1
2
�2x�	� 0 ≤ x ≤ 1/2�

1− 1
2
�2�1− x��	� 1/2 ≤ x ≤ 1
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A3. Compressed uniform alternatives,

F��x� =
x − �

1− 2�
� � ≤ x ≤ 1− �� 0 ≤ � ≤ 1

2



A4. A bimodal locally uniform distribution, with probability mass concentrated
near both extremes, 0 and 1,

F��x� =




x/�2��� 0 ≤ x ≤ ��

1
2
� � ≤ x ≤ 1− �� 0 < � ≤ 1/2�

1− �x − 1�/�2��� 1− � ≤ x ≤ 1


As examples of construction of the test for generic alternatives, we have
considered the families above for some values of the parameters. For each
alternative we determine coefficients �k of (11), for 0 ≤ k ≤ q. Applying the
algorithm for a sample size of n = 20 and a significance level � = 0
05 we determine

Table 1
Computations for statistic Tp for families A1, A2, and A3

Family Fourier coeff. Weights Critical values

A1 −0.801406
� = 1/2 �0 = 1

3 −0.426894 c1 = −0
159319

�k = �−1�k 2
√
2

�k��2
0.353300

1 ≤ k ≤ q −0.036017 c2 = −0
407395
0.222244

A2 �0 = 1/2
	 = 2 �1 = −0
197286 0

�2 = 0 −0.971767 c1 = 0
327609
�3 = −0
0448157 0
�4 = 0 −0.235944 c2 = 0
215799
�5 = −0
0197851 0

A3 �0 = 1/2 0
� = 0
15 �k = 0, 0.837951 c1 = −0
200292

1 ≤ k ≤ q� k even, 0

�k = − 2
√
2

�k��2
�1− 2��, 0.545746 c2 = −0
288662

1 ≤ k ≤ q� k odd. 0

A4 �0 = 1/2
� = 0
05 �k = 0, 0

1 ≤ k ≤ q� k even, 0.998779 c1 = −0
207086

�k = − 4�
√
2

�k��2
+ �2�−1�

√
2

k�
sin�k�/2�, −0.049396 c2 = −0
334052

1 ≤ k ≤ q� k odd. 0
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Table 2
Power of the test based on Tp, Qn, Dn, W

2
n , and the UMP

test for the A1 family

� Tp Qn Dn W 2
n UMP

0.25 0.9980 0.4411 0.9970 0.9973 1.0000
0.5 0.7492 0.1203 0.6550 0.7211 0.9259
0.75 0.1973* 0.0764 0.1830 0.1987 0.3918
2 0.8347 0.3984 0.6730 0.7708 0.9185
3 0.9872 0.8779 0.9910 0.9955 0.9998
4 0.9991 0.9900 1.0000 1.0000 1.0000

Table 3
Power of the tests based on Tp, Qn, Dn, and W 2

n for the A2 family

	 Tp Qn Dn W 2
n

0.25 0.9447 0.9651 0.8071 0.8597
0.5 0.6524 0.7238 0.2879 0.2840
0.75 0.1893* 0.2203 0.0916 0.0905
2 0.8045 0.7523 0.1288 0.1013
3 0.9929 0.9955 0.4029 0.5107
4 1.0000 1.0000 0.7361 0.8951

Table 4
Power of the test based on Tp, Qn, Dn, and W 2

n for the A3 family

� Tp Qn Dn W 2
n

0.05 0.1761* 0.1016 0.0453 0.0387
0.10 0.6049 0.3609 0.0451 0.0426
0.15 0.9894 0.8244 0.0677 0.0669
0.25 1.0000 1.0000 0.3775 0.6195
0.35 1.0000 1.0000 1.0000 1.0000

Table 5
Power of the test based on Tp, Qn, Dn, and W 2

n for the A4 family

� Tp Qn Dn W 2
n

0.05 0.9619 0.9585 1.0000 1.0000
0.15 0.8905 0.9309 1.0000 1.0000
0.25 0.7951 0.7736 0.8817 0.7533
0.35 0.3934* 0.3097 0.3321 0.1964
0.45 0.0745* 0.0697 0.0931 0.0752
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the vector of coefficients L, which are the components weights, for the test based
on Tp, for p = 4 and q = 5. We also compute the critical regions for each case. The
results are shown in Table 1.

5. Discussion and Concluding Remarks

Tables 2–5 contain the power comparisons of the test based on Tp with the tests
based on Qn, Dn, and W 2

n . These powers have been estimated from N = 10� 000
samples of size n = 20 as the relative frequency of values of the statistic in the
critical region. Since the UMP test is easy to compute for the A1 family, we have
included these results in Table 2 for comparison.

For some values of the parameter in the A2 and A4 families, the power of
the test based on Qn exceeds that of Tp. According to theory, this should not
happen, Qn belongs to the class of statistics from which Tp has been extracted,
via an optimization. After checking several possible causes of inaccuracy, we can
discard both a too small p and a too small q, since doubling them does not
improve substantially final results. Our best guess as to the cause of this anomaly
is that Tp is obtained as the exact solution to an approximate problem, namely the
optimization of an asymptotic power. It appears that these phenomenon appears
if the expectation of the alternative distribution coincides with that of the null
hypothesis and it becomes more significant for those parameter values for which the
variance of the alternative distribution is close to that of the null hypothesis. An
asterisk denotes entries in the tables having this problem.
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