HOJA DE EJERCICIOS 6

1.- Sean X_1, \dots, X_n e Y_1, \dots, Y_m las dos muestras extraídas.

Sean
$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
 $\hat{\mu}_2 = \frac{1}{m} \sum_{j=1}^m Y_j$ $\hat{\mu}_3 = \frac{1}{n+m} (\sum_{i=1}^n X_i + \sum_{j=1}^m Y_j)$

Se cumple: $E [\hat{\mu}_1] = E [\hat{\mu}_2] = E [\hat{\mu}_3] = \mu$, luego los tres estimadores de la media poblacional μ son centrados. Además, se tiene que

$$V[\hat{\mu}_1] = \frac{\sigma^2}{n}$$
 $V[\hat{\mu}_2] = \frac{\sigma^2}{m}$ $V[\hat{\mu}_3] = \frac{\sigma^2}{n+m}$

Por lo tanto, claramente $V[\mu_3] < V[\mu_1]$ y $V[\mu_3] < V[\mu_2]$ por lo tanto μ_3 es más eficiente que cualquiera de los otros dos.

2.-

a) E[
$$T_1$$
] = E[$\frac{X_1 + 4X_2}{5}$] = $\frac{1}{5}(\mu + 4\mu) = \mu$ T_1 es insesgado

E [
$$T_2$$
] = E [$\frac{X_1 + X_2 + X_3 + X_4}{3}$] = $\frac{4}{3}\mu \neq \mu \implies \text{sesgo}(T_2) = \frac{4}{3}\mu - \mu = \frac{1}{3}\mu$

b) E.C.M.
$$[T_1] = V[T_1] = V[\frac{X_1 + 4X_2}{5}] = \frac{17}{25}k \mu^2$$

E.C.M [
$$T_2$$
] = V [T_2] + $(\frac{1}{3}\mu)^2$ = $\frac{4k}{9}\mu^2 + \frac{1}{9}\mu^2 = \frac{\mu^2}{9}(1+4k)$

c) E.C.M [
$$T_2$$
] < E.C.M. [T_1] $\Leftrightarrow \frac{\mu^2}{9}(1+4k) < \frac{17}{25}k \mu^2 \Leftrightarrow k > \frac{25}{53}$

3.-

a)
$$E[S^2] = \sigma^2 \implies E[\hat{\sigma}^2] = \lambda \sigma^2 + (1 - \lambda) \sigma^2, \forall \lambda$$

b) V [
$$\sigma^2$$
] = V[$\frac{(n-1)S^2}{\sigma^2}$] = V [χ^2_{n-1}] = 2(n-1) \Rightarrow V[S^2] = $\frac{2\sigma^4}{n-1}$

$$V[\hat{\sigma}^2] = \lambda^2 \frac{2\sigma^4}{n_1 - 1} + (1 - \lambda)^2 \frac{2\sigma^4}{n_2 - 1}$$

$$\frac{d}{\partial \lambda} V[\hat{\sigma}^2] = 0 \implies \lambda = \frac{n_1 - 1}{n_1 + n_2 - 2}$$

 $\frac{d^2}{\partial^2 \lambda} V[\hat{\sigma}^2] > 0 \implies \text{es efectivamente un mínimo.}$

4.-

a) E [
$$\mu_1$$
] = $\frac{1}{4}$ E[X_1] + $\frac{1}{2(n-2)}$ E[$\sum_{i=2}^{n-1} X_i$] + $\frac{1}{4}$ E[X_n] = $\frac{1}{4}\mu + \frac{1}{2(n-2)}(n-2)\mu + \frac{1}{4}\mu = \mu$

$$E[\mu_2] \frac{1}{n} E[\sum_{i=1}^n X_i] = \frac{1}{n} n \mu = \mu$$

b) V [
$$A_1$$
] = $\frac{1}{16}$ V[X_1] + $\frac{1}{4(n-2)^2}$ V [$\sum_{i=2}^{n-1} X_i$] + $\frac{1}{16}$ V [X_n] = $\frac{1}{16}\sigma^2 + \frac{1}{4(n-2)^2}$ (n-2)

$$\sigma^2 + \frac{1}{16} \sigma^2 = \frac{n}{8(n-2)} \cdot \sigma^2$$

$$V [\hat{\mu}_2] = \frac{1}{n^2} V [\sum_{i=1}^n X_i] = \frac{1}{n^2} n \sigma^2 = \frac{1}{n} \sigma^2.$$

La eficiencia relativa de μ_2 respecto de μ_1 viene dada por el cociente:

$$V[\mu_1]/V[\mu_2] = (\frac{n}{8(n-2)}.\sigma^2): (\frac{1}{n}\sigma^2) = \frac{n^2}{8(n-2)}$$

c) Como son estimadores insesgados:

E.C.M [
$$\hat{\mu}_1$$
] = V [$\hat{\mu}_1$] = $\frac{n}{8(n-2)}$. σ^2

E.C.M[
$$\mu_2$$
] = V [μ_2] = $\frac{1}{n} \sigma^2$.

5.-

a) El estimador $\hat{\mu}_1$ es sesgado puesto que E($\hat{\mu}_1$)= μ +1/3 μ

El estimador $\hat{\mu}_2$ es insesgado puesto que $E(\hat{\mu}_2)=\mu$.

El estimador $\hat{\mu}_1$ es más eficiente que $\hat{\mu}_2$ puesto que su varianza es menor.

Calculo el error cuadrático medio de los dos estimadores y obtengo lo siguiente:

ECM(
$$\hat{\mu}_1$$
)=V($\hat{\mu}_1$)+sesgo² ($\hat{\mu}_1$)=31+ $\frac{1}{9}\mu^2$

$$ECM(\hat{\mu}_2)=V(\hat{\mu}_2)+sesgo^2(\hat{\mu}_2)=81$$

Como el parámetro μ sólo puede tomar un valor entre 0 y 10, el ECM($\hat{\mu}_1$)<ECM($\hat{\mu}_2$), por lo que finalmente elegiría el estimador $\hat{\mu}_1$.

b)

$$L(x_1,...,x_5;\mu) = \left(\frac{1}{3\sqrt{2\pi}}\right)^5 e^{-\frac{1}{18}\sum_{i=1}^5 (xi-\mu)^2}$$

$$\widehat{\mu}_{mv} = \frac{\sum_{i=1}^{5} x_i}{5}$$

Comprobamos que el estimador calculado es máximo.

$$\frac{d^2}{d\mu^2} = -\frac{5}{9} < 0$$

c) El estimador máximo verosímil es preferible a los propuestos puesto que es insesgado y tiene una menor varianza.

6.- $E(X) = \frac{\theta}{3}$. Se comprueba que $E(\theta^*) = E(3\overline{X}) = 3E(\overline{X}) = 3E(X) = 3\frac{\theta}{3} = \theta$, por lo tanto, es insesgado.

7.

- a) Los dos son insesgados ya que $E(\mu_1) = \mu$ y $E(\mu_2) = \mu$.
- b) Es más eficiente μ_1 ya que $Var(\mu_1) < Var(\mu_2)$.
- c) $\mu_3 = \frac{x_1 + x_2 + x_3}{3}$ es insesgado y más eficiente que los otros dos.

8.-

- a) La media muestral no es un estimador insesgado puesto que $E(\overline{X}) = \frac{\theta}{2} \neq \theta$
- b) Para que el estimador sea insesgado es necesario que K=2.