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Regression diagnostics

Diagnostics

» The theoretical assumptions for the simple linear regression model

with one response variable Y and one explicative variable x are:
> Linearity:  y; =00+ Pixi+u;, fori=1,...,n

Homogeneity:  E[uj] =0, fori=1,...,n

Homoscedasticity:  Var[u] = o2, fori=1,...,n

Independence:  u; and u; are independent for i # j

Normality:  u; ~ N(0,0?), for i=1,...,n

» We study how to apply diagnostic procedures to test if these
assumptions are appropriate for the available data (x;, y;)

> Based on the analysis of the residuals e; = y; — i

vy vy VvYyYy



Diagnostics: scatterplots

Scatterplots
» The simplest diagnostic procedure is based on the visual
examination of the scatterplot for (x;, y;)

» Often this simple but powerful method reveals patterns suggesting
whether the theoretical model might be appropriate or not

» We illustrate its application on a classical example. Consider the four
following datasets



Diagnostics: scatterplots

The Anscombe datasets

TABLE 3-10
Four Data Sets

DATA SET 1 DATA SET 2
Y X Y
10.0 8.04 10.0 9.14
8.0 6.95 8.0 B.14
13.0 7.58 13.0 8.74
9.0 8.81 9.0 8.77
11.0 8.33 11.0 9.26
14.0 9.96 14.0 8.10
8.0 7.24 6.0 6.13
4.0 4.26 4.0 3.10
12.0 10.84 12.0 9.13
7.0 4.82 7.0 7.26
5.0 5.68 5.0 4.74
DATA SET 3 DATA SET 4
X Y
10.0 7.46 8.0 6.58
8.0 6.77 8.0 5.76
13.0 12.74 8.0 771
9.0 711 8.0 8.84
11.0 7.81 8.0 8.47
140 8.84 8.0 7.04
6.0 6.08 8.0 5.25
4.0 5.39 19.0 12.50
12.0 8.15 8.0 5.56
7.0 6.42 8.0 7.91
5.0 5.73 8.0 6.89

source: F. J. Anscombe, op. cit.



Diagnostics: scatterplots

The Anscombe example

» The estimated regression model for each of the four previous
datasets is the same
> yi = 3,04 0,5%
» n=11, =90 y=75 ry=0817

» The estimated standard error of the estimator f31,

2
SR

(n—1)s2

takes the value 0,118 in all four cases. The corresponding T statistic
takes the value T =0,5/0,118 = 4,237

» But the corresponding scatterplots show that the four datasets are
quite different. Which conclusions could we reach from these
diagrams?



Diagnostics: scatterplots

Anscombe data scatterplots
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FIGURE 3-29  Scatterplots for the four data sets of Table 3-10
sounce: F. J. Anscombe, op cit,



Residual analysis

Further analysis of the residuals

> If the observation of the scatterplot is not sufficient to reject the
model, a further step would be to use diagnosis methods based on
the analysis of the residuals ¢; = y; — §;

» This analysis starts by standarizing the residuals, that is, dividing
them by the residuals (quasi-)standard deviation sg. The resulting
quantities are known as standarized residuals:

€;
SR
» Under the assumptions of the linear regression model, the

standarized residuals are approximately independent standard normal
random variables

> A plot of these standarized residuals should show no clear pattern



Residual analysis

Residual plots

» Several types of residual plots can be constructed. The most
common ones are:
> Plot of standardized residuals vs. x
> Plot of standardized residuals vs. § (the predicted responses)

» Deviations from the model hypotheses result in patterns on these
plots, which should be visually recognizable



Residual plots examples

Consistency of the theoretical model
(a) Déta and regression line Standardized residuals
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Residual plots examples

Nonlinearity
(b) Data and regression line Standardized residuals
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Residual plots examples

Heteroscedasticity

(©)

Data and regression line
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Residual analysis

Outliers

> In a plot of the regression line we may observe outlier data, that is,
data that show significant deviations from the regression line (or
from the remaining data)

» The parameter estimators for the regression model, Bo and [y, are
very sensitive to these outliers

> It is important to identify the outliers and make sure that they really
are valid data

» Statgraphics is able to show for example the data that generate
“Unusual residuals” or “Influential points”



Residual analysis

Normality of the errors

> One of the theoretical assumptions of the linear regression model is
that the errors follow a normal distribution

» This assumption can be checked visually from the analysis of the
residuals €;, using different approaches:
» By inspection of the frequency histogram for the residuals
> By inspection of the “Normal Probability Plot” of the residuals
(significant deviations of the data from the straight line in the plot
correspond to significant departures from the normality assumption)



The ANOVA decomposition

Introduction
» ANOVA: ANalysis Of VAriance

» When fitting the simple linear regression model y; = 30 + /3’1X,- to a
data set (x;,y;) for i = 1,..., n, we may identify three sources of
variability in the responses

> variability associated to the model:
SSM =321, (5i = 7%,

where the initials SS denote “sum of squares” and M refers to the
model
> variability of the residuals:

SSR=3,(yi—9) =21, €

> total variability: SST =37, (yi — ¥)?
» The ANOVA decomposition states that: SST = SSM + SSR



The ANOVA decomposition

The coefficient of determination R2

>

>

>

The ANOVA decomposition states that SST = SSM + SSR

Note that y; —y = (vi — 9i)) + (3 — ¥)

SSM = Y""_(9; — ¥)? measures the variation in the responses due
to the regression model (explained by the predicted values ¥;)
Thus, the ratio SSR/SST is the proportion of the variation in the
responses that is not explained by the regression model

The ratio R? = SSM/SST = 1 — SSR/SST is the proportion of the
variation in the responses that is explained by the regression model.
It is known as the coefficient of determination

The value of the coefficient of determination satisfies R? = rfy (the
squared correlation coefficient)

For example, if R? = 0,85 the variable x explains 85 % of the
variation in the response variable y



The ANOVA decomposition

ANOVA table
Source of variability ~ SS DF Mean F ratio
Model SSM 1 SsM/1 SSM /s
Residuals/errors SSR n—2 SSR/(n—2)=s3

Total SST n-1




The ANOVA decomposition

ANOVA hypothesis testing
» Hypothesis test, Hy: 1 =0 vs. Hy : 1 #0

» Consider the ratio

F_ _SSM/1__ SSM
T SSR/(n—-2) 2

> Under Hy, F follows an F; ,_p distribution
> Test at a significance level a: reject Hy if F > Fi 2.0

» How does this result relate to the test based on the Student-t we
saw in Lesson 47 They are equivalent



The ANOVA decomposition

Statgraphics output

Regression Analysis - Linear model: Y = a + b*X

Dependent variable: Precio en ptas.
Independent variable: Produccion en kg.

Standard T
Parameter Estimate Error Statistic P-Value
Intercept 74,1151 8,73577 8,4841 0,0000
Slope -1,35368 0,3002 -4,50924 0,0020

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 528,475 1 528,475 20,33 0,0020
Residual 207,925 8 < 25,990§>

Total (Corr.) 736,4 9

Correlation Coefficient = -0,84714

R-squared = 71,7647 percent 2

Standard Error of Est. = 5,0981 SR



Nonlinear relationships and linearizing transformations

Introduction

> Consider the case when the deterministic part f(x;; a, b) of the
response in the model

yi=f(x;a,b)+u, i=1,...,n

is a nonlinear function of x that depends on two parameters a and b
(for example, f(x; a, b) = ab*)

> In some cases we may apply transformations to the data to linearize
them. We are then able to apply the linear regression procedure

» From the original data (x;, y;) we obtain the transformed data

/ !

(Xi7yi)

» The parameters By and [3; corresponding to the linear relation
between x/ and y/ are transformations of the parameters a and b



Nonlinear relationships and linearizing transformations

Linearizing transformations

» Examples of linearizing transformations:

» If y = f(x; a, b) = ax® then logy = log a + blog x. We have
> y' =logy, x' =logx, 3o =loga, B1 = b

> If y = f(x;a, b) = ab* then logy = log a + (log b)x. We have
> y' =logy, x' = x, Bo = loga, 51 = log b

> If y =f(x;a,b) =1/(a+ bx) then 1/y = a+ bx. We have
>y =1/y.xX'=x,Bo=a PL=b

> If y = f(x; a, b) = log(ax®) then y = log a + b(log x). We have
> y' =y, x'=logx, Bo=loga, B1 =b



A matrix treatment of linear regression

Introduction

» Remember the simple linear regression model,
yi=00+bixi+u, i=1...,n

> If we write one equation for each one of the observations, we have

i = Bo+pfixi+u
Yo = Bo+Bixo+uwm
Yn = ﬂO + ﬂlxn + up



A matrix treatment of linear regression

The model in matrix form

> We can write the preceding equations in matrix form as

Vi Bo + Bix1 uy
¥2 Bo + Bixo U
: - : + :
Yn /60 + ﬂan Un

» And splitting the parameters 3 from the variables x;,

1 1 x i

¥ B 1 x Bo up
2 i <&>+ 5

Yn 1 Xn up



A matrix treatment of linear regression

The regression model in matrix form

> We can write the preceding matrix relationship

n 1 x uy
JEE I NE
: : : b :
Yn 1 x, Up
as
y=XB+u

> y: response vector; X: explanatory variables matrix (or experimental
design matrix); B: vector of parameters; u: error vector



The regression model in matrix form

Covariance matrix for the errors

» We denote as Cov(u) the n x n matrix of covariances for the errors.
Its (i,j)-th element is given by cov(uj, u;) = 0 if i # j and
cov(u;, u;) = Var(u;) = o2

» Thus, Cov(u) is the identity matrix l,5, multiplied by o:

o2 0 .- 0

0 o2 ... 0
Cov(u) =

g



The regression model in matrix form

Least-squares estimation

» The least-squares vector parameter estimate ﬁ is the unique solution
of the 2 x 2 matrix equation (check the dimensions)

(XTX)B = XTy’

that is, .
B = (XTX)"1XTy.
» The vector § = (§;) of response estimates is given by

N

y=Xg

and the residual vector is defined ase =y — y



The multiple linear regression model

Introduction

» Use of the simple linear regression model: predict the value of a
response y from the value of an explanatory variable x

> In many applications we wish to predict the response y from the
values of several explanatory variables xi, ..., xx
» For example:
> forecast the value of a house as a function of its size, location, layout
and number of bathrooms
» forecast the size of a parliament as a function of the population, its
rate of growth, the number of political parties with parliamentary
representation, etc.



The multiple linear regression model

The model
» Use of the multiple linear regression model: predict a response y
from several explanatory variables x, ..., xk
» |If we have n observations, for i =1,...,n,

Yi = Po + Bixit + Boxio + - -+ + Bixik + U

» We assume that the error variables u; are independent random
variables following a N(0, ) distribution



The multiple linear regression model

The least-squares fit

» We have n observations, and for i =1,...,n
yi = Bo + Bixin + Baxia + -+ + Brxik + u;

» We wish to fit to the data (x;1, Xj2, - . ., Xik, i) a hyperplane of the
form

9i = Bo + Bixin + Baxia + -+ - + Brxin
» The residual for observation i is defined as ¢; = y; — ¥;

» We obtain the parameter estimates Bj as the values that minimize
the sum of the squares of the residuals



The multiple linear regression model

The model in matrix form

» We can write the model as a matrix relationship,

Bo
n 1 X1 x2 -o0 xuk ) uy
Y2 1 X1 X0 -+ X 7))
Yn 1 Xnl  Xn2 e Xnk ﬂ.k Un

and in compact form as
y=X8+u

> y: response vector; X: explanatory variables matrix (or experimental
design matrix); 3: vector of parameters; u: error vector



The multiple linear regression model

Least-squares estimation

» The least-squares vector parameter estimate ﬁA is the unique solution
of the (k + 1) x (k + 1) matrix equation (check the dimensions)

(X™X)5 = XTy,
and as in the k = 1 case (simple linear regression) we have
B = (XTX)"1xTy.

» The vector § = (§;) of response estimates is given by

~

y=Xg

and the residual vector is defined ase =y — y



The multiple linear regression model

Variance estimation

» For the multiple linear regression model, an estimator for the error
variance o2 is the residual (quasi-)variance,

27:1 e,-2

2:7
R _k_—1

and this estimator is unbiased

> Note that for the simple linear regression case we had n — 2 in the
denominator



The multiple linear regression model

The sampling distribution of 3

| 2

Under the model assumptions, the least-squares estimator B for the
parameter vector 3 follows a multivariate normal distribution

E(B) = 3 (it is an unbiased estimator)

The covariance matrix for 3 is Cov(83) = o?(X"X)?

We estimate Cov(3) using s3(X"X)~!

The estimate of Cov(3) provides estimates s2(/3;) for the variance
Var(f;). s2(f3;) is the standard error of the estimator 3;

If we standardize 3; we have

B - B
s(6;)

~ th—k—1 (the Student-t distribution)



The multiple linear regression model

Inference on the parameters §;

> Confidence interval for 3; at a confidence level 1 — «

ﬁj + tn—k—l;a/2 S(ﬁj)

> Hypothesis testing for Hy : §; = 0 vs. H; : §; # 0 at a confidence
level o

> Reject Ho if |T| > ty_k—_1,0/2, Where

T = —=
s(5))

is the test statistic



The ANOVA decomposition

The multivariate case
» ANOVA: ANalysis Of VAriance

> When flttmg the multlple linear regression model
,60 +ﬂ1X,1 + - +ﬂkX,k to a data set (X,l, .. X,'k,y,') for i = 1,....n
we may identify three sources of variability in the responses

> variability associated to the model:
SSM = 27:1(5\/’- - .)_/)23

where the initials SS denote “sum of squares” and M refers to the
model
> variability of the residuals:

SSR=31,(vi—9) =37, €
> total variability: SST = 37, (i — ¥)?
» The ANOVA decomposition states that: SST = SSM + SSR



The ANOVA decomposition

The coefficient of determination R2

>

>

>

The ANOVA decomposition states that SST = SSM + SSR

Note that y; — y = (v; — yi) + (i — ¥)

SSM = Y""_(9; — ¥)? measures the variation in the responses due
to the regression model (explained by the predicted values ¥;)
Thus, the ratio SSR/SST is the proportion of the variation in the
responses that is not explained by the regression model

The ratio R? = SSM/SST = 1 — SSR/SST is the proportion of the
variation in the responses that is explained by the explanatory
variables. It is known as the coefficient of multiple determination
The value of this coefficient satisfies R? = r3 (the squared
correlation coefficient)

For example, if R? = 0,85 the variables xi, ..., xx explain 85 % of
the variation in the response variable y



The ANOVA decomposition

ANOVA table
Source of variability SS DF Mean F ratio
Model SSMm k SSM/k (SSM/k)/s%
Residuals/errors SSR n—k—1 SSR/(n—k—1)=s3

Total SST n—1




The ANOVA decomposition

ANOVA hypothesis testing

» Hypothesis test, Hy : 1 = o =+ = Bk =0 vs. Hy : §; # 0 for
some j=1,...,k
> Hp: the response does not depend on any x;

Consider the ratio

v

SSM /k SSM

F

T SSR/(n—k—1) 2

v

Under Hp, F follows an Fy ,_k—_1 distribution

v

Test at a significance level a: reject Hy if F > Fy n—k—1.a



